Qing-An Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6764062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regio- and Stereoselective Diarylation of 1,3-Dienes via Ni/Cr Cocatalysis. ACS Catalysis, 2022, 12, 2158-2165.	5.5	19
2	Photo-induced catalytic Câ^'H heteroarylation of group 8 metallocenes. Cell Reports Physical Science, 2022, 3, 100768.	2.8	2
3	Photoâ€Induced Construction of <i>N</i> â€Aryl Amides by Fe Catalysis. European Journal of Organic Chemistry, 2022, 2022, .	1.2	6
4	Catalytic prenylation and reverse prenylation of aromatics. Trends in Chemistry, 2022, 4, 658-675.	4.4	7
5	Bioinspired and Ligandâ€Regulated Unnatural Prenylation and Geranylation of Oxindoles with Isoprene under Pd Catalysis. Angewandte Chemie, 2022, 134, .	1.6	7
6	Bioinspired and Ligandâ€Regulated Unnatural Prenylation and Geranylation of Oxindoles with Isoprene under Pd Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
7	CPA-catalyzed multicomponent reaction of anilines, aldehydes, and azetidinones: Rapid access to enantiopure-fused azetidines. Chem Catalysis, 2022, 2, 2024-2033.	2.9	4
8	Rhodium-Catalyzed Deuterated Tsuji–Wilkinson Decarbonylation of Aldehydes with Deuterium Oxide. Journal of the American Chemical Society, 2022, 144, 11081-11087.	6.6	7
9	Electrochemically driven regioselective Câ^'H phosphorylation of group 8 metallocenes. Nature Communications, 2022, 13, .	5.8	11
10	Visible Light Induced Bifunctional Rhodium Catalysis for Decarbonylative Coupling of Imides with Alkynes. Angewandte Chemie - International Edition, 2021, 60, 1583-1587.	7.2	29
11	Visible Light Induced Bifunctional Rhodium Catalysis for Decarbonylative Coupling of Imides with Alkynes. Angewandte Chemie, 2021, 133, 1607-1611.	1.6	5
12	Reactivity of ynamides in catalytic intermolecular annulations. Chemical Society Reviews, 2021, 50, 2582-2625.	18.7	114
13	Orthogonal Regulation of Nucleophilic and Electrophilic Sites in Pd atalyzed Regiodivergent Couplings between Indazoles and Isoprene. Angewandte Chemie, 2021, 133, 8402-8409.	1.6	14
14	Orthogonal Regulation of Nucleophilic and Electrophilic Sites in Pd atalyzed Regiodivergent Couplings between Indazoles and Isoprene. Angewandte Chemie - International Edition, 2021, 60, 8321-8328.	7.2	53
15	Pd-Catalyzed Redox Divergent Coupling of Ketones with Terpenols. ACS Catalysis, 2021, 11, 6825-6834.	5.5	7
16	Redoxâ€Divergent Construction of (Dihydro)thiophenes with DMSO. Angewandte Chemie - International Edition, 2021, 60, 24284-24291.	7.2	17
17	Redoxâ€Divergent Construction of (Dihydro)thiophenes with DMSO. Angewandte Chemie, 2021, 133, 24486-24493	1.6	2
18	Catalytic C2 prenylation of unprotected indoles: Late-stage diversification of peptides and two-step	6.9	13

QING-AN CHEN

#	Article	IF	CITATIONS
19	The serendipitous effect of KF in Ritter reaction: Photo-induced amino-alkylation of alkenes. IScience, 2021, 24, 102969.	1.9	11
20	Photo-induced catalytic halopyridylation of alkenes. Nature Communications, 2021, 12, 6538.	5.8	23
21	Ligandâ€Regulated Regiodivergent Hydrosilylation of Isoprene under Iron Catalysis. Angewandte Chemie, 2020, 132, 19277-19282.	1.6	20
22	Copper-catalyzed boroacylation of allenes to access tetrasubstituted vinylboronates. Organic and Biomolecular Chemistry, 2020, 18, 9253-9260.	1.5	9
23	Copper-Catalyzed Asymmetric Carboboronation of Allenes to Access α-Quaternary Amino Esters with Adjacent Stereocenters. Cell Reports Physical Science, 2020, 1, 100067.	2.8	22
24	Acid-catalyzed chemoselective C- and O- prenylation of cyclic 1,3-diketones. Chinese Journal of Catalysis, 2020, 41, 1401-1409.	6.9	12
25	Rhodium-catalyzed regio- and enantioselective allylic alkylation of pyrazol-5-ones with alkynes. Chemical Communications, 2020, 56, 8468-8471.	2.2	12
26	Ligandâ€Regulated Regiodivergent Hydrosilylation of Isoprene under Iron Catalysis. Angewandte Chemie - International Edition, 2020, 59, 19115-19120.	7.2	55
27	Isoprene: A Promising Coupling Partner in C–H Functionalizations. Synlett, 2020, 31, 1649-1655.	1.0	3
28	Ruthenium(<scp>ii</scp>)-catalyzed intermolecular annulation of alkenyl sulfonamides with alkynes: access to bicyclic sultams. Chemical Communications, 2020, 56, 2614-2617.	2.2	5
29	Cobalt-Catalyzed Regioselective Carboamidation of Alkynes with Imides Enabled by Cleavage of C–N and C–C Bonds. Organic Letters, 2020, 22, 3386-3391.	2.4	19
30	Nickel-catalyzed allyl–allyl coupling reactions between 1,3-dienes and allylboronates. Chemical Communications, 2020, 56, 7431-7434.	2.2	18
31	Acid atalyzed Regiodivergent Annulation of 4â€Hydroxycoumarins with Isoprene: Entry to Pyranocoumarins and Pyranochromones. European Journal of Organic Chemistry, 2019, 2019, 6510-6514.	1.2	20
32	Cobalt-catalyzed hydroxymethylarylation of terpenes with formaldehyde and arenes. Chemical Science, 2019, 10, 9560-9564.	3.7	49
33	A regioselectivity switch in Pd-catalyzed hydroallylation of alkynes. Chemical Science, 2019, 10, 6311-6315.	3.7	44
34	Catalytic Prenylation and Reverse Prenylation of Indoles with Isoprene: Regioselectivity Manipulation through Choice of Metal Hydride. Angewandte Chemie, 2019, 131, 5492-5496.	1.6	19
35	Catalytic Prenylation and Reverse Prenylation of Indoles with Isoprene: Regioselectivity Manipulation through Choice of Metal Hydride. Angewandte Chemie - International Edition, 2019, 58, 5438-5442.	7.2	66
36	Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable NAD(P)H Models. Angewandte Chemie, 2019, 131, 1827-1831.	1.6	7

QING-AN CHEN

#	Article	IF	CITATIONS
37	Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable NAD(P)H Models. Angewandte Chemie - International Edition, 2019, 58, 1813-1817.	7.2	51
38	Asymmetric Hydrogenation of Isoquinolines and Pyridines Using Hydrogen Halide Generated in Situ as Activator. Organic Letters, 2017, 19, 4988-4991.	2.4	59
39	BrÃ,nsted Acid-Promoted Formation of Stabilized Silylium Ions for Catalytic Friedel–Crafts C–H Silylation. Journal of the American Chemical Society, 2016, 138, 7868-7871.	6.6	108
40	Alkyne Hydroacylation: Switching Regioselectivity by Tandem Ruthenium Catalysis. Journal of the American Chemical Society, 2015, 137, 3157-3160.	6.6	83
41	Rhodium-Catalyzed Enantioselective Hydroamination of Alkynes with Indolines. Journal of the American Chemical Society, 2015, 137, 8392-8395.	6.6	146
42	Regioselective Hydroacylation of 1,3-Dienes by Cobalt Catalysis. Journal of the American Chemical Society, 2014, 136, 3772-3775.	6.6	153
43	Homogeneous palladium-catalyzed asymmetric hydrogenation. Chemical Society Reviews, 2013, 42, 497-511.	18.7	334
44	Synthesis of MeO-PEG-Supported Ferrocenyloxazoline Ligands and Their Application in Asymmetric Catalysis. Acta Chimica Sinica, 2013, 71, 40.	0.5	5
45	Iridium Catalyzed Asymmetric Hydrogenation of Cyclic Imines of Benzodiazepinones and Benzodiazepines. Organic Letters, 2012, 14, 3890-3893.	2.4	37
46	Asymmetric hydrogenolysis of racemic tertiary alcohols, 3-substituted 3-hydroxyisoindolin-1-ones. Chemical Communications, 2012, 48, 1698-1700.	2.2	90
47	Pd-Catalyzed asymmetric hydrogenation of 3-(toluenesulfonamidoalkyl)indoles. Organic and Biomolecular Chemistry, 2012, 10, 1235-1238.	1.5	67
48	Iridium atalyzed Asymmetric Hydrogenation of Pyridinium Salts. Angewandte Chemie - International Edition, 2012, 51, 10181-10184.	7.2	135
49	Dihydrophenanthridine: A New and Easily Regenerable NAD(P)H Model for Biomimetic Asymmetric Hydrogenation. Journal of the American Chemical Society, 2012, 134, 2442-2448.	6.6	247
50	Asymmetric Hydrogenation of Heteroarenes and Arenes. Chemical Reviews, 2012, 112, 2557-2590.	23.0	938
51	Enantioselective Pd-catalyzed hydrogenation of tetrasubstituted olefins of cyclic β-(arylsulfonamido)acrylates. Tetrahedron Letters, 2012, 53, 2560-2563.	0.7	42
52	Convergent Asymmetric Disproportionation Reactions: Metal/BrÃ,nsted Acid Relay Catalysis for Enantioselective Reduction of Quinoxalines. Journal of the American Chemical Society, 2011, 133, 6126-6129.	6.6	198
53	Highly Enantioselective Partial Hydrogenation of Simple Pyrroles: A Facile Access to Chiral 1-Pyrrolines. Journal of the American Chemical Society, 2011, 133, 8866-8869.	6.6	142
54	Biomimetic Asymmetric Hydrogenation: In Situ Regenerable Hantzsch Esters for Asymmetric Hydrogenation of Benzoxazinones. Journal of the American Chemical Society, 2011, 133, 16432-16435.	6.6	175

QING-AN CHEN

#	Article	IF	CITATIONS
55	An Enantioselective Approach to 2,3â€Disubstituted Indolines through Consecutive BrÃnsted Acid/Pdâ€Complexâ€Promoted Tandem Reactions. Chemistry - A European Journal, 2011, 17, 7193-7197.	1.7	90
56	Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles Activated by BrÃ,nsted Acids. Journal of the American Chemical Society, 2010, 132, 8909-8911.	6.6	263
57	Asymmetric Hydrogenation with Water/Silane as the Hydrogen Source. Chemistry - A European Journal, 2010, 16, 1133-1136.	1.7	80
58	Highly Effective and Diastereoselective Synthesis of Axially Chiral Bis-sulfoxide Ligands via Oxidative Aryl Coupling. Organic Letters, 2010, 12, 1928-1931.	2.4	67
59	Bifunctional AgOAc-catalyzed asymmetric reactions. Chemical Communications, 2010, 46, 4043.	2.2	48
60	Enantioselective Pd-Catalyzed Hydrogenation of Fluorinated Imines: Facile Access to Chiral Fluorinated Amines. Organic Letters, 2010, 12, 5075-5077.	2.4	94
61	Thieme Chemistry Journal Awardees - Where Are They Now? Bifunctional Silver Acetate Catalyzed Asymmetric Mannich-Type Reactions. Synlett, 2009, 2009, 2236-2241.	1.0	5
62	AgOAc-catalyzed asymmetric amination of glycine Schiff bases with azodicarboxylates. Tetrahedron Letters, 2009, 50, 6866-6868.	0.7	14
63	A Novel Nickel(0)-Catalyzed Cascade Ullmann-Pinacol Coupling: From o-Bromobenzaldehyde to trans-9,10-Dihydroxy-9,10-dihydrophenanthrene. Synlett, 2007, 2007, 2101-2105.	1.0	2
64	Transition Metal-Catalyzed Decarbonylative Functionalization of Phthalimides. Synthesis, 0, , .	1.2	1