
Mohammad Valipour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6763974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. Journal of Hydrology, 2013, 476, 433-441.	5.4	683
2	Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorological Applications, 2016, 23, 91-100.	2.1	277
3	Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agricultural Water Management, 2017, 180, 50-60.	5.6	228
4	Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorological Applications, 2015, 22, 592-598.	2.1	215
5	Future of agricultural water management in Africa. Archives of Agronomy and Soil Science, 2015, 61, 907-927.	2.6	182
6	Surface irrigation simulation models: a review. International Journal of Hydrology Science and Technology, 2015, 5, 51.	0.3	168
7	Simulation of open- and closed-end border irrigation systems using SIRMOD. Archives of Agronomy and Soil Science, 2015, 61, 929-941.	2.6	153
8	How Much Meteorological Information Is Necessary to Achieve Reliable Accuracy for Rainfall Estimations?. Agriculture (Switzerland), 2016, 6, 53.	3.1	132
9	Drainage, waterlogging, and salinity. Archives of Agronomy and Soil Science, 2014, 60, 1625-1640.	2.6	122
10	Land use policy and agricultural water management of the previous half of century in Africa. Applied Water Science, 2015, 5, 367-395.	5.6	114
11	Temperature analysis of reference evapotranspiration models. Meteorological Applications, 2015, 22, 385-394.	2.1	113
12	Agricultural water management in the world during past half century. Archives of Agronomy and Soil Science, 2015, 61, 657-678.	2.6	107
13	Analysis of potential evapotranspiration using 11 modified temperature-based models. International Journal of Hydrology Science and Technology, 2014, 4, 192.	0.3	102
14	Application of new mass transfer formulae for computation of evapotranspiration. Journal of Applied Water Engineering and Research, 2014, 2, 33-46.	1.8	100
15	A comprehensive study on irrigation management in Asia and Oceania. Archives of Agronomy and Soil Science, 2015, 61, 1247-1271.	2.6	91
16	Importance of solar radiation, temperature, relative humidity, and wind speed for calculation of reference evapotranspiration. Archives of Agronomy and Soil Science, 2015, 61, 239-255.	2.6	82
17	Study of different climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations. Archives of Agronomy and Soil Science, 2015, 61, 679-694.	2.6	81
18	Evaluation of radiation methods to study potential evapotranspiration of 31 provinces. Meteorology and Atmospheric Physics, 2015, 127, 289-303.	2.0	77

MOHAMMAD VALIPOUR

#	Article	IF	CITATIONS
19	Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods. Water Resources Management, 2014, 28, 4237-4255.	3.9	76
20	Analysis of potential evapotranspiration using limited weather data. Applied Water Science, 2017, 7, 187-197.	5.6	74
21	Calibration of mass transfer-based models to predict reference crop evapotranspiration. Applied Water Science, 2017, 7, 625-635.	5.6	68
22	Future of the area equipped for irrigation. Archives of Agronomy and Soil Science, 2014, 60, 1641-1660.	2.6	66
23	Estimation of actual evapotranspiration by using MODIS images (a case study: Tajan catchment). Archives of Agronomy and Soil Science, 2015, 61, 695-709.	2.6	65
24	Modelling Evapotranspiration to Increase the Accuracy of the Estimations Based on the Climatic Parameters. Water Conservation Science and Engineering, 2016, 1, 197-207.	1.7	63
25	Investigation of Valiantzas' evapotranspiration equation in Iran. Theoretical and Applied Climatology, 2015, 121, 267-278.	2.8	62
26	Ability of Box-Jenkins Models to Estimate of Reference Potential Evapotranspiration (A Case Study:) Tj ETQq0 0 0 n 01-11.	rgBT /Ove 0.1	rlock 10 Tf 5 59
27	A Comparison between Horizontal and Vertical Drainage Systems (Include Pipe Drainage, Open Ditch) Tj ETQq1 1 2012, 4, 07-12.	0.784314 0.1	4 rgBT /Overi 54
28	Global Experiences on Wastewater Irrigation: Challenges and Prospects. Water Science and Technology Library, 2016, , 289-327.	0.3	48
29	Comparison of Surface Irrigation Simulation Models: Full Hydrodynamic, Zero Inertia, Kinematic Wave. Journal of Agricultural Science, 2012, 4, .	0.2	46
30	Estimation of reference evapotranspiration using multivariate fractional polynomial, Bayesian regression, and robust regression models in three arid environments. Applied Water Science, 2017, 7, 1911-1922.	5.6	45
31	Sprinkle and Trickle Irrigation System Design Using Tapered Pipes for Pressure Loss Adjusting. Journal of Agricultural Science, 2012, 4, .	0.2	44
32	Global experience on irrigation management under different scenarios. Journal of Water and Land Development, 2017, 32, 95-102.	0.9	44
33	How do different factors impact agricultural water management?. Open Agriculture, 2016, 1, 89-111.	1.7	43
34	Evolution of Irrigation-Equipped Areas as Share of Cultivated Areas. Irrigation & Drainage Systems Engineering, 2013, 02, .	0.1	38
35	Necessity of Irrigated and Rainfed Agriculture in the World. Irrigation & Drainage Systems Engineering, 2013, 2, .	0.1	31
36	The Evolution of Agricultural Drainage from the Earliest Times to the Present. Sustainability, 2020, 12, 416.	3.2	31

MOHAMMAD VALIPOUR

#	Article	IF	CITATIONS
37	Need to Update of Irrigation and Water Resources Information According to the Progresses of Agricultural Knowledge. Agrotechnology, 2013, 01, .	0.1	21
38	Effect of Drainage Parameters Change on Amount of Drain Discharge in Subsurface Drainage Systems. IOSR Journal of Agriculture and Veterinary Science, 2012, 1, 10-18.	0.1	21
39	SHCP: Soil Heat Calculator Program. IOSR Journal of Applied Physics, 2012, 2, 44-50.	0.1	19
40	Hybrid MARMA-NARX model for flow forecasting based on the large-scale climate signals, sea-surface temperatures, and rainfall. Hydrology Research, 2018, 49, 1788-1803.	2.7	15
41	Temporal analysis of reference evapotranspiration to detect variation factors. International Journal of Global Warming, 2018, 14, 385.	0.5	9
42	Sustainable and Regenerative Development of Water Mills as an Example of Agricultural Technologies for Small Farms. Water (Switzerland), 2022, 14, 1621.	2.7	6
43	Optimisation of cropping pattern considering stomatal response to elevated CO _{2 emission and climate change. International Journal of Global Warming, 2018, 15, 227.}	0.5	1