Peng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6763874/publications.pdf

Version: 2024-02-01

		47006	56724
149	7,876	47	83
papers	citations	h-index	g-index
151	151	151	7596
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Doped quantum dots for chemo/biosensing and bioimaging. Chemical Society Reviews, 2013, 42, 5489.	38.1	590
2	Conjugation of Glucose Oxidase onto Mn-Doped ZnS Quantum Dots for Phosphorescent Sensing of Glucose in Biological Fluids. Analytical Chemistry, 2010, 82, 1427-1433.	6.5	330
3	Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. Nanoscale, 2016, 8, 8427-8442.	5.6	277
4	Electrochemically Generated versus Photoexcited Luminescence from Semiconductor Nanomaterials: Bridging the Valley between Two Worlds. Chemical Reviews, 2014, 114, 11027-11059.	47.7	265
5	Semicondutor quantum dots-based metal ion probes. Nanoscale, 2014, 6, 43-64.	5.6	264
6	Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchemical Journal, 2012, 103, 1-14.	4.5	215
7	A Multidimensional Sensing Device for the Discrimination of Proteins Based on Manganeseâ€Doped ZnS Quantum Dots. Angewandte Chemie - International Edition, 2011, 50, 8118-8121.	13.8	208
8	CdTe Quantum Dots (QDs) Based Kinetic Discrimination of Fe ²⁺ and Fe ³⁺ , and CdTe QDs-Fenton Hybrid System for Sensitive Photoluminescent Detection of Fe ²⁺ . Analytical Chemistry, 2009, 81, 6252-6257.	6.5	204
9	Phosphorescent Carbon Dots for Highly Efficient Oxygen Photosensitization and as Photo-oxidative Nanozymes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40808-40814.	8.0	192
10	Manganese as a Catalytic Mediator for Photo-oxidation and Breaking the pH Limitation of Nanozymes. Nano Letters, 2019, 19, 3214-3220.	9.1	161
11	Applications of chemical vapor generation in non-tetrahydroborate media to analytical atomic spectrometry. Journal of Analytical Atomic Spectrometry, 2010, 25, 1217.	3.0	156
12	Optically-active nanocrystals for inner filter effect-based fluorescence sensing: Achieving better spectral overlap. TrAC - Trends in Analytical Chemistry, 2019, 110, 183-190.	11.4	155
13	Rationale of 3,3′,5,5′-Tetramethylbenzidine as the Chromogenic Substrate in Colorimetric Analysis. Analytical Chemistry, 2020, 92, 12400-12406.	6.5	142
14	Determination of Cadmium in Biological Samples. Applied Spectroscopy Reviews, 2006, 41, 35-75.	6.7	111
15	Dual-emitting quantum dot nanohybrid for imaging of latent fingerprints: simultaneous identification of individuals and traffic light-type visualization of TNT. Chemical Science, 2015, 6, 4445-4450.	7.4	108
16	An ascorbic acid sensor based on protein-modified Au nanoclusters. Analyst, The, 2013, 138, 229-233.	3.5	104
17	Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction. Analytica Chimica Acta, 2009, 650, 33-38.	5.4	97
18	Ni2+-modulated homocysteine-capped CdTe quantum dots as a turn-on photoluminescent sensor for detecting histidine in biological fluids. Biosensors and Bioelectronics, 2010, 26, 485-490.	10.1	94

#	Article	IF	CITATIONS
19	Bromide as a Robust Backfiller on Gold for Precise Control of DNA Conformation and High Stability of Spherical Nucleic Acids. Journal of the American Chemical Society, 2018, 140, 4499-4502.	13.7	91
20	Proteinâ€Directed Synthesis of Mnâ€Doped ZnS Quantum Dots: A Dualâ€Channel Biosensor for Two Proteins. Chemistry - A European Journal, 2013, 19, 7473-7479.	3.3	90
21	Inductively coupled plasma mass spectrometryâ€based immunoassay: A review. Mass Spectrometry Reviews, 2014, 33, 373-393.	5.4	90
22	Fast Imaging of Eccrine Latent Fingerprints with Nontoxic Mn-Doped ZnS QDs. Analytical Chemistry, 2014, 86, 3279-3283.	6.5	87
23	Ultralong Roomâ€Temperature Phosphorescence from Boric Acid. Angewandte Chemie - International Edition, 2021, 60, 9500-9506.	13.8	82
24	Lanthanide-Boosted Singlet Oxygen from Diverse Photosensitizers along with Potent Photocatalytic Oxidation. ACS Nano, 2019, 13, 14152-14161.	14.6	80
25	A Fast-Responsive OFF–ON Near-Infrared-II Fluorescent Probe for In Vivo Detection of Hypochlorous Acid in Rheumatoid Arthritis. Analytical Chemistry, 2021, 93, 13014-13021.	6.5	79
26	Enriching Mn-Doped ZnSe Quantum Dots onto Mesoporous Silica Nanoparticles for Enhanced Fluorescence/Magnetic Resonance Imaging Dual-Modal Bio-Imaging. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34060-34067.	8.0	72
27	Highly efficient oxygen photosensitization of carbon dots: the role of nitrogen doping. Nanoscale, 2020, 12, 5543-5553.	5.6	72
28	A simple chemical etching strategy to generate "ion-imprinted―sites on the surface of quantum dots for selective fluorescence turn-on detecting of metal ions. Chemical Communications, 2010, 46, 7046.	4.1	70
29	Sensing during In Situ Growth of Mnâ€Doped ZnS QDs: A Phosphorescent Sensor for Detection of H ₂ S in Biological Samples. Chemistry - A European Journal, 2014, 20, 952-956.	3.3	69
30	Longâ€Lived Charge Carriers in Mnâ€Doped CdS Quantum Dots for Photoelectrochemical Cytosensing. Chemistry - A European Journal, 2015, 21, 5129-5135.	3.3	67
31	A general strategy for development of a single benzene fluorophore with full-color-tunable, environmentally insensitive, and two-photon solid-state emission. Chemical Communications, 2019, 55, 11462-11465.	4.1	64
32	In Situ Activation of CdS Electrochemiluminescence Film and Its Application in H ₂ S Detection. Analytical Chemistry, 2014, 86, 8657-8664.	6.5	63
33	Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging. Nanoscale, 2014, 6, 14319-14325.	5.6	63
34	Ratiometric Phosphorescent Probe for Thallium in Serum, Water, and Soil Samples Based on Long-Lived, Spectrally Resolved, Mn-Doped ZnSe Quantum Dots and Carbon Dots. Analytical Chemistry, 2018, 90, 2939-2945.	6.5	63
35	Exploring surface chemistry of nano-TiO2 for automated speciation analysis of Cr(iii) and Cr(vi) in drinking water using flow injection and ET-AAS detection. Journal of Analytical Atomic Spectrometry, 2009, 24, 1098.	3.0	62
36	Phosphorescent Differential Sensing of Physiological Phosphates with Lanthanide Ions-Modified Mn-Doped ZnCdS Quantum Dots. Analytical Chemistry, 2016, 88, 5892-5897.	6.5	60

#	Article	IF	CITATIONS
37	Cloud point extraction–thermospray flame quartz furnace atomic absorption spectrometry for determination of ultratrace cadmium in water and urine. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 1310-1314.	2.9	59
38	Modulation of the Singlet Oxygen Generation from the Double Strand DNA-SYBR Green I Complex Mediated by T-Melamine-T Mismatch for Visual Detection of Melamine. Analytical Chemistry, 2017, 89, 5101-5106.	6.5	58
39	Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage. Nano Research, 2020, 13, 455-460.	10.4	57
40	Gold Nanoparticle-Based Colorimetric Assay for Selenium Detection via Hydride Generation. Analytical Chemistry, 2017, 89, 4695-4700.	6.5	56
41	Nitrogen and copper (II) co-doped carbon dots for applications in ascorbic acid determination by non-oxidation reduction strategy and cellular imaging. Talanta, 2020, 210, 120649.	5.5	56
42	In Situ Generation and Consumption of H ₂ O ₂ by Bienzyme–Quantum Dots Bioconjugates for Improved Chemiluminescence Resonance Energy Transfer. Analytical Chemistry, 2016, 88, 6418-6424.	6.5	55
43	A Both-End Blocked Peroxidase-Mimicking DNAzyme for Low-Background Chemiluminescent Sensing of miRNA. ACS Sensors, 2017, 2, 810-816.	7.8	53
44	Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase. Nanoscale, 2017, 9, 15606-15611.	5.6	52
45	Highly sensitive and interference-free determination of bismuth in environmental samples by electrothermal vaporization atomic fluorescence spectrometry after hydride trapping on iridium-coated tungsten coil. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 704-709.	2.9	51
46	Analyte-Activable Probe for Protease Based on Cytochrome C-Capped Mn: ZnS Quantum Dots. Analytical Chemistry, 2014, 86, 10078-10083.	6.5	51
47	Selective determination of trace amounts of silver in complicated matrices by displacement-cloud point extraction coupled with thermospray flame furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2008, 23, 752.	3.0	50
48	Photocatalytic oxidation of TMB with the double stranded DNA–SYBR Green I complex for label-free and universal colorimetric bioassay. Chemical Communications, 2015, 51, 14465-14468.	4.1	50
49	Evaluation of tungsten coil electrothermal vaporization-Ar/H2 flame atomic fluorescence spectrometry for determination of eight traditional hydride-forming elements and cadmium without chemical vapor generation. Talanta, 2008, 74, 505-511.	5. 5	48
50	Simultaneous and selective preconcentration of trace Cu and Ag by one-step displacement cloud point extraction for FAAS determination. Talanta, 2010, 81, 586-590.	5.5	45
51	Ultrasensitive fluorescence detection of glutaraldehyde in water samples with bovine serum albumin-Au nanoclusters. Microchemical Journal, 2011, 99, 327-331.	4.5	45
52	Label-Free and Separation-Free Atomic Fluorescence Spectrometry-Based Bioassay: Sensitive Determination of Single-Strand DNA, Protein, and Double-Strand DNA. Analytical Chemistry, 2016, 88, 2065-2071.	6.5	45
53	Highly Stable Colorimetric Sensing by Assembly of Gold Nanoparticles with SYBR Green I: From Charge Screening to Charge Neutralization. Analytical Chemistry, 2020, 92, 1455-1462.	6.5	45
54	Simultaneously Broadened Visible Light Absorption and Boosted Intersystem Crossing in Platinum-Doped Graphite Carbon Nitride for Enhanced Photosensitization. ACS Applied Materials & Interfaces, 2019, 11, 20770-20777.	8.0	44

#	Article	IF	CITATIONS
55	On-line precipitation–dissolution in knotted reactor for thermospray flame furnace AAS for determination of ultratrace cadmium. Microchemical Journal, 2009, 91, 193-196.	4.5	43
56	Inorganic arsenic speciation analysis of water samples by trapping arsine on tungsten coil for atomic fluorescence spectrometric determination. Talanta, 2009, 78, 885-890.	5 . 5	42
57	Recent advances in nanomaterial-enhanced enzyme-linked immunosorbent assays. Analyst, The, 2020, 145, 4069-4078.	3.5	42
58	Highly Sensitive D–A–D-Type Near-Infrared Fluorescent Probe for Nitric Oxide Real-Time Imaging in Inflammatory Bowel Disease. Analytical Chemistry, 2021, 93, 4975-4983.	6.5	41
59	Strand Displacement-Induced Enzyme-Free Amplification for Label-Free and Separation-Free Ultrasensitive Atomic Fluorescence Spectrometric Detection of Nucleic Acids and Proteins. Analytical Chemistry, 2016, 88, 12386-12392.	6.5	40
60	Atomic absorption spectrometric determination of trace tellurium after hydride trapping on platinum-coated tungsten coil. Microchemical Journal, 2010, 95, 320-325.	4.5	38
61	Phosphorescent sensing of Cr3+ with protein-functionalized Mn-doped ZnS quantum dots. Analyst, The, 2013, 138, 6589.	3.5	38
62	Halo-fluorescein for photodynamic bacteria inactivation in extremely acidic conditions. Nature Communications, 2021, 12, 526.	12.8	37
63	Plasma-assisted quadruple-channel optosensing of proteins and cells with Mn-doped ZnS quantum dots. Nanoscale, 2016, 8, 4291-4298.	5 . 6	35
64	Colorimetric determination of uranyl (<mml:math)="" etq<="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>q0 0 0 rgB 5.5</td><td>T /Overlock 1 35</td></mml:math>	q0 0 0 rgB 5.5	T /Overlock 1 35
	in seawater via DNAzyme-modulated photosensitization. Talanta, 2018, 185, 258-263.		
65	Understanding the Effect of pH on the Solubility and Aggregation Extent of Humic Acid in Solution by Combining Simulation and the Experiment. Environmental Science & Experiment, 2022, 56, 917-927.	10.0	35
66	Determination of Cadmium in Biological Samples: An Update from 2006 to 2011. Applied Spectroscopy Reviews, 2012, 47, 327-370.	6.7	34
67	Nanocrystals for large Stokes shift-based optosensing. Chinese Chemical Letters, 2019, 30, 1843-1848.	9.0	33
68	Photo-modulated nanozymes for biosensing and biomedical applications. Analytical Methods, 2019, 11, 5081-5088.	2.7	33
69	Flame Furnace Atomic Absorption Spectrometry: A Review. Applied Spectroscopy Reviews, 2009, 44, 411-437.	6.7	30
70	Direct determination of mercury in cosmetic samples by isotope dilution inductively coupled plasma mass spectrometry after dissolution with formic acid. Analytica Chimica Acta, 2014, 812, 6-11.	5.4	30
71	Optical sensing at the nanobiointerface of metal ion–optically-active nanocrystals. Nanoscale, 2018, 10, 5035-5046.	5. 6	30
72	A RGB-Type Quantum Dot-based Sensor Array for Sensitive Visual Detection of Trace Formaldehyde in Air. Scientific Reports, 2016, 6, 36794.	3.3	29

#	Article	IF	Citations
73	Ultralong Roomâ€Temperature Phosphorescence from Boric Acid. Angewandte Chemie, 2021, 133, 9586-9592.	2.0	29
74	Effects of room-temperature ionic liquids on the chemical vapor generation of gold: Mechanism and analytical application. Analytica Chimica Acta, 2009, 650, 59-64.	5.4	28
75	Solution-free, in situ preparation of nano/micro CuO/ZnO in dielectric barrier discharge for sensitive cataluminescence sensing of acetic acid. Analyst, The, 2013, 138, 3687.	3.5	28
76	Oxidative Capacity Storage of Transient Singlet Oxygen from Photosensitization with a Redox Mediator for Improved Chemiluminescent Sensing. Analytical Chemistry, 2019, 91, 9407-9412.	6.5	27
77	Carbon dots and AuNCs co-doped electrospun membranes for ratiometric fluorescent determination of cyanide. Journal of Hazardous Materials, 2020, 384, 121368.	12.4	27
78	Improving the Signal-to-Background Ratio during Catalytic Hairpin Assembly through Both-End-Blocked DNAzyme. ACS Sensors, 2018, 3, 1190-1195.	7.8	26
79	Recombinase Polymerase Amplification Coupled with a Photosensitization Colorimetric Assay for Fast <i>Salmonella</i> spp. Testing. Analytical Chemistry, 2021, 93, 6559-6566.	6.5	26
80	Highly sensitive pneumatic nebulization flame furnace atomic absorption spectrometry: complete sample aerosol introduction and on-line preconcentration of cadmium by atom trap. Journal of Analytical Atomic Spectrometry, 2008, 23, 37-42.	3.0	25
81	Atomic spectrometric detectors for gas chromatography. TrAC - Trends in Analytical Chemistry, 2016, 77, 139-155.	11.4	25
82	Simultaneous extraction of level 2 and level 3 characteristics from latent fingerprints imaged with quantum dots for improved fingerprint analysis. Chinese Chemical Letters, 2017, 28, 1961-1964.	9.0	25
83	Phosphorescent inner filter effect-based sensing of xanthine oxidase and its inhibitors with Mn-doped ZnS quantum dots. Nanoscale, 2018, 10, 8477-8482.	5.6	25
84	Self-photo-oxidation for extending visible light absorption of carbon dots and oxidase-like activity. Carbon, 2021, 182, 537-544.	10.3	25
85	Glucose oxidase-directed, instant synthesis of Mn-doped ZnS quantum dots in neutral media with retained enzymatic activity: mechanistic study and biosensing application. Journal of Materials Chemistry B, 2015, 3, 5942-5950.	5.8	24
86	AuNCs-Catalyzed Hydrogen Selenide Oxidation: Mechanism and Application for Headspace Fluorescent Detection of Se(IV). Analytical Chemistry, 2019, 91, 6141-6148.	6.5	24
87	One-Step Preparation of Oxygen/Fluorine Dual Functional MWCNTs with Good Water Dispersibility by the Initiation of Fluorine Gas. ACS Applied Materials & Interfaces, 2016, 8, 7991-7999.	8.0	23
88	Comparison of tungsten coil electrothermal vaporization and thermospray sample introduction methods for flame furnace atomic absorption spectrometry. Talanta, 2009, 77, 1778-1782.	5.5	22
89	Photosensitization of Molecular Oxygen on Graphene Oxide for Ultrasensitive Signal Amplification. Chemistry - A European Journal, 2018, 24, 2602-2608.	3.3	22
90	Polypeptide uploaded efficient nanophotosensitizers to overcome photodynamic resistance for enhanced anticancer therapy. Chemical Engineering Journal, 2021, 403, 126344.	12.7	22

#	Article	IF	Citations
91	Chemical vapor generation from an ionic liquid using a solid reductant: determination of Hg, As and Sb by atomic fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 2016, 31, 415-422.	3.0	21
92	Modular Design of High-Brightness pH-Activatable Near-Infrared BODIPY Probes for Noninvasive Fluorescence Detection of Deep-Seated Early Breast Cancer Bone Metastasis: Remarkable Axial Substituent Effect on Performance. ACS Central Science, 2021, 7, 2039-2048.	11.3	21
93	An optical humidity sensor based on CdTe nanocrystals modified porous silicon. Microchemical Journal, 2013, 108, 100-105.	4.5	20
94	Synergy of adsorption and photosensitization of graphene oxide for improved removal of organic pollutants. RSC Advances, 2017, 7, 16204-16209.	3.6	19
95	Comparison of benzothiazole-based dyes for sensitive DNA detection. Chinese Chemical Letters, 2020, 31, 2950-2954.	9.0	19
96	A portable, battery-powered photoelectrochemical aptasesor for field environment monitoring of E. coli O157:H7. Sensors and Actuators B: Chemical, 2021, 346, 130520.	7.8	19
97	Synergetic enhancement effect of ionic liquid and diethyldithiocarbamate on the chemical vapor generation of nickel for its atomic fluorescence spectrometric determination in biological samples. Analytica Chimica Acta, 2009, 652, 143-147.	5.4	18
98	Organosilane-functionalized carbon quantum dots and their applications to "on-off-on― fluorometric determination of chromate and ascorbic acid, and in white light-emitting devices. Mikrochimica Acta, 2019, 186, 516.	5.0	18
99	Nucleoside-based fluorescent carbon dots for discrimination of metal ions. Journal of Materials Chemistry B, 2020, 8, 3640-3646.	5.8	18
100	Bioactive triterpenoids from Lantana camara showing anti-inflammatory activities in vitro and in vivo. Bioorganic Chemistry, 2020, 101, 104004.	4.1	18
101	Colorimetric Polymerase Chain Reaction Enabled by a Fast Light-Activated Substrate Chromogenic Detection Platform. Analytical Chemistry, 2020, 92, 6456-6461.	6.5	18
102	Room-Temperature Phosphorescence of Pure Axially Chiral Bicarbazoles. Journal of Physical Chemistry Letters, 2022, 13, 5838-5844.	4.6	18
103	Regulation of trichome development in tobacco by JcZFP8 , a C2H2 zinc finger protein gene from Jatropha curcas L Gene, 2018, 658, 47-53.	2.2	17
104	Probing the Formation Kinetics and Thermodynamics with Rationally Designed Analytical Tools Enables One-Pot Synthesis and Purification of a Tetrahedral DNA Nanostructure. Analytical Chemistry, 2021, 93, 7045-7053.	6.5	17
105	Modification-free and N-acetyl-L-cysteine-induced colorimetric response of AuNPs: A mechanistic study and sensitive Hg2+ detection. Talanta, 2016, 159, 87-92.	5.5	16
106	Suppressing the background activity of hemin for boosting the sensitivity of DNAzyme-based biosensors by SYBR Green I. Biosensors and Bioelectronics, 2020, 169, 112603.	10.1	16
107	Analysis of the Isotopic Purity of D ₂ O with the Characteristic NIR-II Phosphorescence of Singlet Oxygen from a Photostable Polythiophene Photosensitizer. Analytical Chemistry, 2021, 93, 9737-9743.	6.5	16
108	Inductively Coupled Plasma Optical Emission Spectrometry in the Vacuum Ultraviolet Region. Applied Spectroscopy Reviews, 2009, 44, 507-533.	6.7	15

#	Article	IF	Citations
109	A compact electrothermal-flame tandem atomizer for highly sensitive atomic fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 2012, 27, 1780.	3.0	15
110	Ultrasensitive atomic fluorescence spectrometric detection of DNA with quantum dot-assemblies as signal amplification labels. Journal of Analytical Atomic Spectrometry, 2015, 30, 888-894.	3.0	15
111	Aggregation-induced phosphorescence enhancement of Mn-doped ZnS quantum dots: the role of dot-to-dot distance. Nanoscale, 2018, 10, 9236-9244.	5.6	15
112	Corona discharge radical emission spectroscopy: a multi-channel detector with nose-type function for discrimination analysis. Analyst, The, 2013, 138, 2249.	3.5	14
113	Development of pH-activatable fluorescent probes for rapid visualization of metastatic tumours and fluorescence-guided surgery <i>via</i> topical spraying. Chemical Communications, 2021, 57, 10636-10639.	4.1	14
114	Two birds with one stone: A highly sensitive near-infrared BODIPY-based fluorescent probe for the simultaneous detection of Fe2+ and H+ in vivo. Talanta, 2021, 233, 122601.	5.5	14
115	Cuâ€doped quantum dots: a new class of nearâ€infrared emitting fluorophores for bioanalysis and bioimaging. Luminescence, 2019, 34, 782-789.	2.9	13
116	Double-Stranded DNA Matrix for Photosensitization Switching. CCS Chemistry, 2021, 3, 2394-2404.	7.8	13
117	Combating the hypoxia limit of photodynamic therapy through reversing the survival-related pathways of cancer cells. Coordination Chemistry Reviews, 2022, 452, 214306.	18.8	13
118	Exploration of Displacement Reaction/Sorption Strategies in Spectrometric Analysis. Applied Spectroscopy Reviews, 2013, 48, 629-653.	6.7	12
119	The reaction kinetics and mechanism of crude fluoroelastomer vulcanized by direct fluorination with fluorine/nitrogen gas. RSC Advances, 2015, 5, 18932-18938.	3.6	12
120	Various surface functionalizations of ultra-high-molecular-weight polyethylene based on fluorine-activation behavior. RSC Advances, 2015, 5, 79081-79089.	3.6	12
121	Curcin C inhibit osteosarcoma cell line U2OS proliferation by ROS induced apoptosis, autophagy and cell cycle arrest through activating JNK signal pathway. International Journal of Biological Macromolecules, 2022, 195, 433-439.	7.5	12
122	Improved Performance of On-line Atom Trapping in Flame Furnace Atomic Absorption Spectrometry by Chemical Vapor Generation: Determination of Cadmium in High-Salinity Water Samples. Spectroscopy Letters, 2009, 42, 240-245.	1.0	11
123	Dually enriched Cu:CdS@ZnS QDs with both polyvinylpyrrolidone twisting and SiO ₂ loading for improved cell imaging. Chemical Communications, 2015, 51, 3552-3555.	4.1	11
124	Phosphorescent Inner Filter Effect-based Sensing System for Determination of \hat{l}^2 -glucuronidase Using Manganese-doped Zinc Sulfide Quantum Dots. Chinese Journal of Analytical Chemistry, 2017, 45, 1909-1914.	1.7	11
125	Color-tunable ultralong room temperature phosphorescence from EDTA. Chemical Communications, 2021, 57, 3575-3578.	4.1	11
126	Low-Cost Naked-Eye UVB and UVC Dosimetry Based on 3,3′,5,5′-Tetramethylbenzidine. Analytical Chemistry, 2022, 94, 4373-4379.	6.5	11

#	Article	IF	CITATIONS
127	Octachloro-fluorescein: Synthesis and photosensitizer performance evaluation. Dyes and Pigments, 2019, 170, 107635.	3.7	10
128	DNA-modulated photosensitization: current status and future aspects in biosensing and environmental monitoring. Analytical and Bioanalytical Chemistry, 2019, 411, 4415-4423.	3.7	9
129	Natural iridoids from Patrinia heterophylla showing anti-inflammatory activities in vitro and in vivo. Bioorganic Chemistry, 2020, 104, 104331.	4.1	9
130	Sensitive Determination of Lead by Flame Atomic Absorption Spectrometry Improved with Branched Capillary as Hydride Generator and Without Phase Separation. Mikrochimica Acta, 2006, 155, 441-445.	5.0	8
131	A composite with excellent tribological performance derived from oxy-fluorinated UHMWPE particle/polyurethane. RSC Advances, 2014, 4, 9321.	3.6	8
132	Systematic Probing of the Sequence Selectivity of Exonuclease III with a Photosensitization Colorimetric Assay. ACS Omega, 2019, 4, 13382-13387.	3.5	8
133	Selective Heavy Atom Effect Forming Photosensitizing Hot Spots in Double-Stranded DNA Matrix. Journal of Physical Chemistry Letters, 2021, 12, 9205-9212.	4.6	8
134	Se powder as precursor without solubilization for Mn-doped ZnSe QDs: Fast synthesis and analytical characterization. Microchemical Journal, 2017, 134, 191-196.	4.5	7
135	Low power density 980 nm-driven ultrabright red-emitting upconversion nanoparticles <i>via</i> synergetic Yb ³⁺ /Tm ³⁺ cascade-sensitization. Journal of Materials Chemistry C, 2019, 7, 13415-13424.	5.5	7
136	Recent advances in the targeted fluorescent probes for the detection of metastatic bone cancer. Science China Chemistry, 2021, 64, 1283-1296.	8.2	7
137	An aqueous room-temperature phosphorescent probe for Gd ³⁺ . Chemical Communications, 2022, 58, 2686-2689.	4.1	7
138	Universal "Three-in-One―Matrix to Maximize Reactive Oxygen Species Generation from Food and Drug Administration-Approved Photosensitizers for Photodynamic Inactivation of Biofilms. ACS Applied Materials & Diterfaces, 2022, 14, 15059-15068.	8.0	7
139	Facile monitoring of meat freshness with a self-constructed photosensitization colorimetric instrument. Food Chemistry, 2022, 385, 132676.	8.2	7
140	Nitric oxide inhibitory iridoids as potential anti-inflammatory agents from Valeriana jatamansi. Bioorganic Chemistry, 2020, 101, 103974.	4.1	6
141	Exploration of nano-surface chemistry for spectral analysis. Science Bulletin, 2013, 58, 2017-2026.	1.7	5
142	Universal and label-free photosensitization colorimetric assays enabled by target-induced termini transformation of dsDNA resistant to Exo III digestion. Chemical Communications, 2019, 55, 7211-7214.	4.1	5
143	Activating the neutral pH photozymatic activity of g-C ₃ N ₄ nanosheets through post-synthetic incorporation of Pt. Chemical Communications, 2022, 58, 6930-6933.	4.1	5
144	Chemical analysis and identification the fluorophores of photoluminescent carbon dots beyond infrared and X-ray photoelectron energy spectra. Dyes and Pigments, 2021, 195, 109750.	3.7	4

#	Article	IF	CITATIONS
145	Full liberation of 2-Aminopurine with nucleases digestion for highly sensitive biosensing. Biosensors and Bioelectronics, 2022, 196, 113721.	10.1	4
146	Evaluation of the sequence-dependent relative activity of APE1 for optimal biosensing design. Biosensors and Bioelectronics, 2022, 214, 114539.	10.1	4
147	Easily ignored interference light from the second order diffraction of the excitation grating in a xenon lamp-based spectrometer. Results in Chemistry, 2020, 2, 100072.	2.0	3
148	Polythiophene as a near full pH photo-antimicrobial. Journal of Materials Chemistry B, 2022, 10, 4944-4951.	5 . 8	3
149	InnenrÃ⅓cktitelbild: Ultralong Roomâ€Temperature Phosphorescence from Boric Acid (Angew. Chem.) Tj ETQqI	l 10.7843	 14 ₀ gBT Ove