

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6763772/publications.pdf Version: 2024-02-01

Outli

#	Article	IF	CITATIONS
1	The effects of biomineralization on the localised phase and microstructure evolutions of bacteria-based self-healing cementitious composites. Cement and Concrete Composites, 2022, 128, 104421.	4.6	22
2	Waste Glass-Derived Tobermorite Carriers for Ag+ and Zn2+ Ions. Journal of Composites Science, 2022, 6, 52.	1.4	1
3	Effect of high temperature heating on the microstructure and performance of cesium-based geopolymer reinforced by cordierite. Cement and Concrete Composites, 2022, 129, 104474.	4.6	8
4	A novel method of self-healing cement paste by using gel microparticles encapsulating phosphate. Construction and Building Materials, 2021, 279, 122439.	3.2	12
5	Effect of Rheology of Fresh Paste on the Pore Structure and Properties of Pervious Concrete Based on the High Fluidity Alkali-Activated Slag. Crystals, 2021, 11, 593.	1.0	10
6	Combined effect of NaAlO2 and NaOH on the early age hydration of Portland cement with a high concentration of borate solution. Cement and Concrete Research, 2021, 144, 106430.	4.6	7
7	A high-efficiency self-healing cementitious material based on supramolecular hydrogels impregnated with phosphate and ammonium. Cement and Concrete Research, 2021, 144, 106427.	4.6	13
8	Spatial zonation of a hydrotalcite-like phase in the inner product of slag: New insights into the hydration mechanism. Cement and Concrete Research, 2021, 145, 106460.	4.6	31
9	Mechanical Performance and Microstructure of Ultra-High-Performance Concrete Modified by Calcium Sulfoaluminate Cement. Advances in Civil Engineering, 2021, 2021, 1-9.	0.4	3
10	A Novel Method of Self-Healing in Cementitious Materials by Using Polyacrylic Hydrogel. KSCE Journal of Civil Engineering, 2020, 24, 3406-3415.	0.9	8
11	Iodoform-Blended Portland Cement for Dentistry. Prosthesis, 2020, 2, 277-296.	1.1	1
12	Electrochemical Performance of Steel Embedded in CSA Concrete and Its Interfacial Microstructure. Advances in Materials Science and Engineering, 2020, 2020, 1-8.	1.0	2
13	Uptake of heavy metal ions in layered double hydroxides and applications in cementitious materials: Experimental evidence and first-principle study. Construction and Building Materials, 2019, 222, 96-107.	3.2	21
14	Impact of Bi2O3 and ZrO2 Radiopacifiers on the Early Hydration and C–S–H Gel Structure of White Portland Cement. Journal of Functional Biomaterials, 2019, 10, 46.	1.8	15
15	A novel bio-inspired bone-mimic self-healing cement paste based on hydroxyapatite formation. Cement and Concrete Composites, 2019, 104, 103357.	4.6	21
16	Experimental evidence on formation of ulexite in sulfoaluminate cement paste mixed with high concentration borate solution and its retarding effects. Construction and Building Materials, 2019, 215, 777-785.	3.2	20
17	The Application of 29Si NMR Spectroscopy to the Analysis of Calcium Silicate-Based Cement using Biodentineâ,,¢ as an Example. Journal of Functional Biomaterials, 2019, 10, 25.	1.8	26
18	Effect of Pre-dispersing Metakaolin in Water on the Properties, Hydration, and Metakaolin Distribution in Mortar. Frontiers in Materials, 2019, 6, .	1.2	6

Qıu Lı

#	Article	IF	CITATIONS
19	Hydration of Portland cements in solutions containing high concentration of borate ions: Effects of LiOH. Cement and Concrete Composites, 2019, 102, 94-104.	4.6	28
20	Development of properties and microstructure of concrete with coral reef sand under sulphate attack and drying-wetting cycles. Construction and Building Materials, 2018, 165, 647-654.	3.2	65
21	Effect of aggregate exposing and curing agent on the performance of exposed aggregate concrete. Construction and Building Materials, 2017, 156, 675-683.	3.2	12
22	The Restoration of Compressive Strength of Self-Healing Mortar. Key Engineering Materials, 2017, 726, 500-504.	0.4	0
23	The Impact of Iodoform on the Hydration, Bioactivity and Antimicrobial Properties of White Portland Cement. MATEC Web of Conferences, 2017, 109, 04002.	0.1	3
24	Hydration Products, Microstructure and Durability of Concrete with Metakaolin Addition. Key Engineering Materials, 2016, 680, 420-428.	0.4	0
25	Effect of polyaluminum chloride on the properties and hydration of slag-cement paste. Construction and Building Materials, 2016, 124, 1019-1027.	3.2	17
26	Effect of MgO content of synthetic slag on the formation of Mg-Al LDHs and sulfate resistance of slag-fly ash-clinker binder. Construction and Building Materials, 2016, 125, 766-774.	3.2	24
27	Properties, microstructure and hydration products of lightweight aggregate concrete with metakaolin and slag addition. Construction and Building Materials, 2016, 127, 59-67.	3.2	11
28	Effect of Low Content of Metakaolin Addition on the Properties and Pore Structure of Concrete. Key Engineering Materials, 2016, 680, 411-419.	0.4	0
29	Is magnesia cement low carbon? Life cycle carbon footprint comparing with Portland cement. Journal of Cleaner Production, 2016, 131, 20-27.	4.6	82
30	The hydration chemistry of ProRoot MTA. Dental Materials Journal, 2015, 34, 458-465.	0.8	40
31	Study on the highâ€ŧemperature behavior and rehydration characteristics of hardened cement paste. Fire and Materials, 2015, 39, 741-750.	0.9	59
32	Quantifying CO2 emissions from China's cement industry. Renewable and Sustainable Energy Reviews, 2015, 50, 1004-1012.	8.2	184
33	Effect of metakaolin addition and seawater mixing on the properties and hydration of concrete. Applied Clay Science, 2015, 115, 51-60.	2.6	97
34	Chemical composition and microstructure of hydration products of hardened white portland cement pastes containing admixtures. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 758-767.	0.4	1
35	Chloride resistance of concrete with metakaolin addition and seawater mixing: A comparative study. Construction and Building Materials, 2015, 101, 184-192.	3.2	100
36	Understanding and addressing business needs and sustainability challenges: lessons from Devens eco-industrial park. Journal of Cleaner Production, 2015, 87, 375-384.	4.6	49

Qıu Lı

#	Article	IF	CITATIONS
37	Combined effect of metakaolin and sea water on performance and microstructures of concrete. Construction and Building Materials, 2015, 74, 57-64.	3.2	170
38	Preparation of titanium dioxide nano particle modified photocatalytic self-cleaning concrete. Journal of Cleaner Production, 2015, 87, 762-765.	4.6	122
39	Design and Preparation of Metakaolin-Based Mineral Admixture and its Effects on the Durability of Concrete. RILEM Bookseries, 2015, , 229-236.	0.2	0
40	Hydration kinetics, ion-release and antimicrobial properties of white Portland cement blended with zirconium oxide nanoparticles. Dental Materials Journal, 2014, 33, 805-810.	0.8	10
41	Experimental investigation on chloride diffusion and binding in concrete containing metakaolin. Corrosion Engineering Science and Technology, 2014, 49, 282-286.	0.7	21
42	The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement. Materials Science and Engineering C, 2013, 33, 427-433.	3.8	17
43	Early hydration of white Portland cement in the presence of bismuth oxide. Advances in Applied Ceramics, 2013, 112, 207-212.	0.6	17
44	The impact of zirconium oxide nanoparticles on the hydration chemistry and biocompatibility of white Portland cement. Dental Materials Journal, 2013, 32, 808-815.	0.8	48
45	Water Absorption and Hydration Products of Metakaolin Modified Mortar. Key Engineering Materials, 0, 726, 505-509.	0.4	4