Sergey V Baryshev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6762747/publications.pdf

Version: 2024-02-01

933447 940533 21 264 10 16 citations g-index h-index papers 21 21 21 202 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	High quantum efficiency ultrananocrystalline diamond photocathode for photoinjector applications. Applied Physics Letters, 2014, 105, .	3.3	42
2	Locally Resolved Electron Emission Area and Unified View of Field Emission from Ultrananocrystalline Diamond Films. ACS Applied Materials & Empty Enterfaces, 2017, 9, 33229-33237.	8.0	34
3	GHz laser-free time-resolved transmission electron microscopy: A stroboscopic high-duty-cycle method. Ultramicroscopy, 2016, 161, 130-136.	1.9	31
4	Planar ultrananocrystalline diamond field emitter in accelerator radio frequency electron injector: Performance metrics. Applied Physics Letters, 2014, 105, .	3.3	28
5	Observation of Field-Emission Dependence on Stored Energy. Physical Review Letters, 2015, 115, 264802.	7.8	20
6	<i>InÂSitu</i> Observation of Dark Current Emission in a High Gradient rf Photocathode Gun. Physical Review Letters, 2016, 117, 084801.	7.8	14
7	Field emission microscopy of carbon nanotube fibers: Evaluating and interpreting spatial emission. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	1.2	14
8	Theoretical evaluation of electronic density-of-states and transport effects on field emission from n-type ultrananocrystalline diamond films. Journal of Applied Physics, 2019, 125, .	2. 5	11
9	Mean transverse energy of ultrananocrystalline diamond photocathode. Applied Physics Letters, 2019, 114, .	3.3	11
10	Electron emission projection imager. Review of Scientific Instruments, 2017, 88, 033701.	1.3	10
11	High power conditioning and benchmarking of planar nitrogen-incorporated ultrananocrystalline diamond field emission electron source. Physical Review Accelerators and Beams, 2019, 22, .	1.6	10
12	Field electron emission induced glow discharge in a nanodiamond vacuum diode. Journal Physics D: Applied Physics, 2019, 52, 325301.	2.8	9
13	Dynamic graphitization of ultra-nano-crystalline diamond and its effects on material resistivity. Journal of Applied Physics, 2020, 128, .	2.5	7
14	Nanodiamond Thin Film Field Emitter Cartridge for Miniature High-Gradient Radio Frequency \${X}\$ -Band Electron Injector. IEEE Transactions on Electron Devices, 2018, 65, 1132-1138.	3.0	6
15	Submicrometer ultrananocrystalline diamond films processed in oxygen and hydrogen plasma and analyzed by UV-vis spectroscopy: Thickness and optical constant results. Surface Science Spectra, 2020, 27, 026601.	1.3	4
16	Cryogenic operation of planar ultrananocrystalline diamond field emission source in SRF injector. Applied Physics Letters, 2021, 118, .	3.3	3
17	FEbeam: Cavity and electron emission data conversion, processing, and analysis. A freeware toolkit for rf injectors. Review of Scientific Instruments, 2021, 92, 053305. Ampere-class bright field emission cathode operated at < mml:math	1.3	3

Ampere-class bright field emission cathode operated at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>100</mml:mn><mml:mtext>â€%</mml:mtext><mml:mtext>â€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%</mml:mtext>a€%<

#	Article	IF	CITATIONS
19	Confirmation of Transit Time-Limited Field Emission in Advanced Carbon Materials with a Fast Pattern Recognition Algorithm. ACS Applied Electronic Materials, 2021, 3, 4990-4999.	4.3	2
20	Traveling wakefield tube: THz source powered by nonrelativistic electron beam. Journal of Applied Physics, 2021, 130, 123101.	2.5	1
21	Current Saturation in Semiconductor and Semimetallic Field Emitters. , 2018, , .		1