
Xiang-Hang Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/676245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long noncoding RNA Gm31629 protects against mucosal damage in experimental colitis via YB-1/E2F pathway. JCI Insight, 2022, 7, .	5.0	4
2	New practice in semaglutide on type-2 diabetes and obesity: clinical evidence and expectation. Frontiers of Medicine, 2022, 16, 17-24.	3.4	2
3	miR-188-3p targets skeletal endothelium coupling of angiogenesis and osteogenesis during ageing. Cell Death and Disease, 2022, 13, .	6.3	6
4	A mechanosensitive lipolytic factor in the bone marrow promotes osteogenesis and lymphopoiesis. Cell Metabolism, 2022, 34, 1168-1182.e6.	16.2	32
5	The role of autophagy in bone homeostasis. Journal of Cellular Physiology, 2021, 236, 4152-4173.	4.1	39
6	Endocrine role of bone in the regulation of energy metabolism. Bone Research, 2021, 9, 25.	11.4	55
7	Senescent immune cells release grancalcin to promote skeletal aging. Cell Metabolism, 2021, 33, 1957-1973.e6.	16.2	70
8	Identification of SCARA3 with potential roles in metabolic disorders. Aging, 2021, 13, 2149-2167.	3.1	12
9	MicroRNAâ€188 regulates agingâ€associated metabolic phenotype. Aging Cell, 2020, 19, e13077.	6.7	14
10	Regulation of bone marrow mesenchymal stem cell fate by long non-coding RNA. Bone, 2020, 141, 115617.	2.9	18
11	Communications Between Bone Marrow Macrophages and Bone Cells in Bone Remodeling. Frontiers in Cell and Developmental Biology, 2020, 8, 598263.	3.7	64
12	Bone and Muscle Crosstalk in Aging. Frontiers in Cell and Developmental Biology, 2020, 8, 585644.	3.7	63
13	Obesity and Bone Health: A Complex Link. Frontiers in Cell and Developmental Biology, 2020, 8, 600181.	3.7	59
14	MicroRNAs and Osteoblasts Differentiation. , 2020, , 439-448.		0
15	Ophiopogonin D promotes bone regeneration by stimulating CD31 ^{hi} EMCN ^{hi} vessel formation. Cell Proliferation, 2020, 53, e12784.	5.3	23
16	Reducing Hypothalamic Stem Cell Senescence Protects against Aging-Associated Physiological Decline. Cell Metabolism, 2020, 31, 534-548.e5.	16.2	75
17	The Role of Bone-Derived Exosomes in Regulating Skeletal Metabolism and Extraosseous Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 89.	3.7	32
18	Physical Distancing Measures and Walking Activity in Middle-aged and Older Residents in Changsha, China, During the COVID-19 Epidemic Period: Longitudinal Observational Study. Journal of Medical Internet Research, 2020, 22, e21632.	4.3	49

XIANG-HANG LUO

#	Article	IF	CITATIONS
19	Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis. Bone Research, 2019, 7, 29.	11.4	37
20	Bone Marrow Mesenchymal Stem Cells-Derived Exosomal MiR-29b-3p Regulates Aging-Associated Insulin Resistance. ACS Nano, 2019, 13, 2450-2462.	14.6	119
21	Krüppel-like factor 3 inhibition by mutated lncRNA <i>Reg1cp</i> results in human high bone mass syndrome. Journal of Experimental Medicine, 2019, 216, 1944-1964.	8.5	41
22	Current Progress on MicroRNA-Based Gene Delivery in the Treatment of Osteoporosis and Osteoporotic Fracture. International Journal of Endocrinology, 2019, 2019, 1-17.	1.5	34
23	Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. Journal of Clinical Investigation, 2018, 128, 5251-5266.	8.2	170
24	PGC-1α Controls Skeletal Stem Cell Fate and Bone-Fat Balance in Osteoporosis and Skeletal Aging by Inducing TAZ. Cell Stem Cell, 2018, 23, 193-209.e5.	11.1	108
25	Programmed cell senescence in skeleton during late puberty. Nature Communications, 2017, 8, 1312.	12.8	70
26	MiR-497â^¼195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-11± activity. Nature Communications, 2017, 8, 16003.	12.8	157
27	GDF11 Inhibits Bone Formation by Activating Smad2/3 in Bone Marrow Mesenchymal Stem Cells. Calcified Tissue International, 2016, 99, 500-509.	3.1	34
28	Gender differences in a reference database of age-related femoral neck geometric parameters for Chinese population and their association with femoral neck fractures. Bone, 2016, 93, 64-70.	2.9	4
29	RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF–VEGF complex in extracellular matrix. Nature Communications, 2016, 7, 11455.	12.8	61
30	Lipoprotein receptor–related protein 6 is required for parathyroid hormone–induced <i>Sost</i> suppression. Annals of the New York Academy of Sciences, 2016, 1364, 62-73.	3.8	33
31	Runx2/miR-3960/miR-2861 Positive Feedback Loop Is Responsible for Osteogenic Transdifferentiation of Vascular Smooth Muscle Cells. BioMed Research International, 2015, 2015, 1-7.	1.9	45
32	MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. Journal of Clinical Investigation, 2015, 125, 1509-1522.	8.2	418
33	MiR-503 Regulates Osteoclastogenesis via Targeting RANK. Journal of Bone and Mineral Research, 2014, 29, 338-347.	2.8	186
34	PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nature Medicine, 2014, 20, 1270-1278.	30.7	641
35	miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. Journal of Bone and Mineral Research, 2013, 28, 1180-1190.	2.8	169
36	The role of microRNAs in adipocyte differentiation. Frontiers of Medicine, 2013, 7, 223-230.	3.4	20

XIANG-HANG LUO

#	Article	IF	CITATIONS
37	miR-93/Sp7 function loop mediates osteoblast mineralization. Journal of Bone and Mineral Research, 2012, 27, 1598-1606.	2.8	100
38	A Runx2/miR-3960/miR-2861 Regulatory Feedback Loop during Mouse Osteoblast Differentiation. Journal of Biological Chemistry, 2011, 286, 12328-12339.	3.4	207
39	Targeting miRNAs in osteoblast differentiation and bone formation. Expert Opinion on Therapeutic Targets, 2010, 14, 1109-1120.	3.4	62
40	A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. Journal of Clinical Investigation, 2009, 119, 3666-3677.	8.2	429
41	Development of Arterial Calcification in Adiponectin-Deficient Mice: Adiponectin Regulates Arterial Calcification. Journal of Bone and Mineral Research, 2009, 24, 1461-1468.	2.8	76
42	Adiponectin Stimulates RANKL and Inhibits OPG Expression in Human Osteoblasts Through the MAPK Signaling Pathway. Journal of Bone and Mineral Research, 2006, 21, 1648-1656.	2.8	310
43	Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Experimental Cell Research, 2005, 309, 99-109.	2.6	318
44	Parathyroid hormone inhibits the expression of membrane-type matrix metalloproteinase-1 (MT1-MMP) in osteoblast-like MG-63 cells. Journal of Bone and Mineral Metabolism, 2004, 22, 19-25.	2.7	16
45	Membrane-type matrix metalloproteinase-1 (MT1-MMP) is down-regulated in estrogen-deficient rat osteoblast in vivo. Journal of Endocrinological Investigation, 2004, 27, 1-5.	3.3	17
46	Establishment and evaluation of bone mineral density reference databases appropriate for diagnosis and evaluation of osteoporosis in Chinese women. Journal of Bone and Mineral Metabolism, 2003, 21, 184-192.	2.7	47
47	1α,25â€Dihydroxyvitamin D3Regulates the Expression of Membraneâ€Type Matrix Metalloproteinaseâ€1 in Normal Human Osteoblastâ€like Cells. Endocrine Research, 2003, 29, 353-362.	1.2	6
48	Effects of Estriol on the Proliferation and Differentiation of Human Osteoblastic MGâ€63 Cells. Endocrine Research, 2003, 29, 343-351.	1.2	24
49	Effects of 17β-estradiol on the expression of membrane type 1 matrix metalloproteinase (MT1-MMP) and MMP-2 in human osteoblastic MG-63 cell cultures. Journal of Endocrinological Investigation, 2001, 24, 876-881.	3.3	14