Inti Zumeta-Dubé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6762237/publications.pdf Version: 2024-02-01

Ιντι Ζιιμετα-Durã 🔘

#	Article	IF	CITATIONS
1	Magnetic properties of Pd–Ag nanoalloys obtained by liquid-assisted mechanochemical pathway. Journal of Physics and Chemistry of Solids, 2022, 161, 110427.	4.0	3
2	Unraveling amazing structural features of a highly efficient "oxo-Co/phosphate―catalyst for water oxidation. Applied Catalysis B: Environmental, 2021, 282, 119549.	20.2	6
3	Strong texture tuning along different crystalline directions in glass-supported CeO2 thin films by ultrasonic spray pyrolysis. Scientific Reports, 2021, 11, 2006.	3.3	4
4	New Understanding on an Old Compound: Insights on the Origin of Chain Sequence Defects and Their Impact on the Electronic Structure of AuCN. European Journal of Inorganic Chemistry, 2021, 2021, 3742-3751.	2.0	1
5	Nanostructured CuO film grown from solution by preferential microwave heating of the conducting glass substrate. Materials Letters, 2020, 270, 127687.	2.6	2
6	Production of Methanol from Aqueous CO ₂ by Using Co ₃ O ₄ Nanostructures as Photocatalysts. Journal of Nanomaterials, 2019, 2019, 1-10.	2.7	10
7	Preparation and characterization of (CuInTe2)1-x(TaTe)x solid solutions (0 <x<1). 176-188.<="" 2018,="" 747,="" alloys="" and="" compounds,="" journal="" of="" td=""><td>5.5</td><td>2</td></x<1).>	5.5	2
8	Mechanochemically obtained Pd–Ag nanoalloys. Structural considerations and catalytic activity. Materialia, 2018, 4, 166-174.	2.7	16
9	Facile synthesis of rod-shaped bismuth sulfide@graphene oxide (Bi2S3@GO) composite. Materials Chemistry and Physics, 2018, 219, 376-389.	4.0	16
10	Transformation of Bismuth and β-Bi ₂ O ₃ Nanoparticles into (BiO) ₂ CO ₃ and (BiO) ₄ (OH) ₂ CO ₃ by Capturing CO ₂ : The Role of Halloysite Nanotubes and "Sunlight―on the Crystal Shape and Size. Crystal Growth and Design, 2018, 18, 4334-4346.	3.0	20
11	Bismuth Oxide Nanoparticles Partially Substituted with Eu ^{III} , Mn ^{IV} , and Si ^{IV} : Structural, Spectroscopic, and Optical Findings. Inorganic Chemistry, 2017, 56, 3394-3403.	4.0	22
12	Degradation of bis- <i>p</i> -nitrophenyl phosphate using zero-valent iron nanoparticles. Journal of Physics: Conference Series, 2017, 838, 012034.	0.4	1
13	Can Silver Be Alloyed with Bismuth on Nanoscale? An Optical and Structural Approach. Journal of Physical Chemistry C, 2017, 121, 940-949.	3.1	10
14	Combined experimental–theoretical investigation on the interactions of Diuron with a urea–formaldehyde matrix: implications for its use as an "intelligent pesticide― Chemical Papers, 2017, 71, 2495-2503.	2.2	3
15	First principle calculations on the adsorption of molecular H2 in the largest pore of Co[Fe(CN)5NO] and Ni[Fe(CN)5NO] metal nitroprussides. Effect of the charged cavities on the adsorption and H2-host interactions. Computational Materials Science, 2016, 114, 102-111.	3.0	3
16	Cu 3 TaSe 4 and Cu 3 NbSe 4 : X-ray diffraction, differential thermal analysis, optical absorption and Raman scattering. Journal of Alloys and Compounds, 2016, 658, 749-756.	5.5	21
17	Kinetic studies of the release profiles of antiepileptic drug released from a nanostructured TiO2 matrix Journal of Advances in Chemistry, 2016, 12, 4365-4373.	0.1	1
18	Thermoelectric transport properties of CuFeInTe3. Journal of Alloys and Compounds, 2015, 651, 490-496.	5.5	9

Inti Zumeta-Dubé

#	Article	IF	CITATIONS
19	First Order Raman Scattering in Bulk Bi ₂ S ₃ and Quantum Dots: Reconsidering Controversial Interpretations. Journal of Physical Chemistry C, 2014, 118, 30244-30252.	3.1	66
20	TiO ₂ Sensitization with Bi ₂ S ₃ Quantum Dots: The Inconvenience of Sodium Ions in the Deposition Procedure. Journal of Physical Chemistry C, 2014, 118, 11495-11504.	3.1	72
21	Easy Synthesis of High-Purity BiFeO ₃ Nanoparticles: New Insights Derived from the Structural, Optical, and Magnetic Characterization. Inorganic Chemistry, 2013, 52, 10306-10317.	4.0	105
22	Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. International Journal of Nanomedicine, 2013, 8, 1645.	6.7	59
23	Stabilization of Strong Quantum Confined Colloidal Bismuth Nanoparticles, One-Pot Synthesized at Room Conditions. Journal of Physical Chemistry C, 2012, 116, 14717-14727.	3.1	52
24	Synthesis of TiO2 Nanoparticles with Narrow Size Distribution and Their Evaluation in the Photocatalytic Oxidative Degradation of Bis(4-nitrophenyl) Phosphate. Journal of Physical Chemistry C, 2010, 114, 11381-11389.	3.1	14
25	TiO2 films obtained by microwave-activated chemical-bath deposition used to improve TiO2-conducting glass contact. Solar Energy Materials and Solar Cells, 2009, 93, 1728-1732.	6.2	32
26	TiO2–CuO three-dimensional heterostructure obtained using short time photochemical deposition of copper oxide inside a porous nanocrystalline TiO2 layer. Microporous and Mesoporous Materials, 2008, 109, 560-566.	4.4	10
27	New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 175, 165-171.	3.9	106
28	Nanocrystalline TiO2 photosensitized with natural polymers with enhanced efficiency from 400 to 600nm. Solar Energy Materials and Solar Cells, 2005, 85, 359-369.	6.2	38
29	Preparation of photoelectrodes with spectral response in the visible without applied bias based on photochemically deposited copper oxide inside a porous titanium dioxide film. Thin Solid Films, 2005, 489, 50-55.	1.8	22
30	Photovoltaic behavior of structures based on nanocrystalline semiconductor oxides. Physica Status Solidi (B): Basic Research, 2005, 242, 1807-1811.	1.5	2
31	Two-layer TiO2nanostructured photoelectrode with underlying film obtained by microwave-activated chemical bath deposition (MW-CBD). Semiconductor Science and Technology, 2004, 19, L52-L55.	2.0	10
32	The role of conducting-oxide-substrate type and morphology in TiO2 films grown by microwave chemical bath deposition (MW-CBD) and their photovoltaic characteristics. Journal of Crystal Growth, 2004, 262, 366-374.	1.5	20
33	Rutherford backscattering spectrometry analysis of TiO2 thin films. Materials Characterization, 2003, 50, 155-160.	4.4	5
34	Comparative study of nanocrystalline TiO2 photoelectrodes based on characteristics of nanopowder used. Solar Energy Materials and Solar Cells, 2003, 76, 15-24.	6.2	39
35	Role of the conducting layer substrate on TiO2nucleation when using microwave activated chemical bath deposition. Semiconductor Science and Technology, 2002, 17, 1218-1222.	2.0	15
36	Structural analysis of TiO2 films grown using microwave-activated chemical bath deposition. Thin Solid Films, 2002, 419, 65-68.	1.8	17

#	Article	IF	CITATIONS
37	TiO2 thin film deposition from solution using microwave heating. Thin Solid Films, 2000, 365, 12-18.	1.8	46