
Kaja Kasemets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/676141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment, 2009, 407, 1461-1468.	3.9	1,099
2	Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Archives of Toxicology, 2013, 87, 1181-1200.	1.9	1,016
3	Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicology in Vitro, 2009, 23, 1116-1122.	1.1	531
4	Size-Dependent Toxicity of Silver Nanoparticles to Bacteria, Yeast, Algae, Crustaceans and Mammalian Cells In Vitro. PLoS ONE, 2014, 9, e102108.	1.1	465
5	Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology, 2010, 269, 182-189.	2.0	302
6	Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells <i>in vitro</i> : A comparative review. Nanotoxicology, 2014, 8, 57-71.	1.6	297
7	Biotests and Biosensors for Ecotoxicology of Metal Oxide Nanoparticles: A Minireview. Sensors, 2008, 8, 5153-5170.	2.1	193
8	Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: A transmission electron microscopy study. Water Research, 2011, 45, 179-190.	5.3	159
9	High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles. Toxicology in Vitro, 2008, 22, 1412-1417.	1.1	144
10	Exposure to CuO Nanoparticles Changes the Fatty Acid Composition of Protozoa <i>Tetrahymena thermophila</i> . Environmental Science & Technology, 2011, 45, 6617-6624.	4.6	105
11	Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Science of the Total Environment, 2020, 707, 136073.	3.9	100
12	A novel method for comparison of biocidal properties of nanomaterials to bacteria, yeasts and algae. Journal of Hazardous Materials, 2015, 286, 75-84.	6.5	94
13	Toxicity of CuO Nanoparticles to Yeast <i>Saccharomyces cerevisiae</i> BY4741 Wild-Type and Its Nine Isogenic Single-Gene Deletion Mutants. Chemical Research in Toxicology, 2013, 26, 356-367.	1.7	67
14	Antimicrobial potency of differently coated 10 and 50†nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces, 2018, 170, 401-410.	2.5	64
15	Proactive Approach for Safe Use of Antimicrobial Coatings in Healthcare Settings: Opinion of the COST Action Network AMiCI. International Journal of Environmental Research and Public Health, 2017, 14, 366.	1.2	58
16	BIOTESTS AND BIOSENSORS IN ECOTOXICOLOGICAL RISK ASSESSMENT OF FIELD SOILS POLLUTED WITH ZINC, LEAD, AND CADMIUM. Environmental Toxicology and Chemistry, 2005, 24, 2973.	2.2	56
17	Upon Exposure to Cu Nanoparticles, Accumulation of Copper in the Isopod <i>Porcellio scaber</i> Is Due to the Dissolved Cu Ions Inside the Digestive Tract. Environmental Science & Technology, 2012, 46, 12112-12119.	4.6	48
18	Modification of A-stat for the characterization of microorganisms. Journal of Microbiological Methods, 2003, 55, 187-200.	0.7	39

Kaja Kasemets

#	Article	IF	CITATIONS
19	Environmental hazard of oil shale combustion fly ash. Journal of Hazardous Materials, 2012, 229-230, 192-200.	6.5	38
20	Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces. Scientific Reports, 2020, 10, 13478.	1.6	35
21	Airborne Nanoparticle Release and Toxicological Risk from Metal-Oxide-Coated Textiles: Toward a Multiscale Safe-by-Design Approach. Environmental Science & Technology, 2017, 51, 9305-9317.	4.6	33
22	Antibacterial Activity of Positively and Negatively Charged Hematite (α-Fe2O3) Nanoparticles to Escherichia coli, Staphylococcus aureus and Vibrio fischeri. Nanomaterials, 2021, 11, 652.	1.9	30
23	Impact of surface functionalization on the toxicity and antimicrobial effects of selenium nanoparticles considering different routes of entry. Food and Chemical Toxicology, 2020, 144, 111621.	1.8	28
24	Growth characteristics of Saccharomyces cerevisiae S288C in changing environmental conditions: auxo-accelerostat study. Antonie Van Leeuwenhoek, 2007, 92, 109-128.	0.7	26
25	Extracellular conversion of silver ions into silver nanoparticles by protozoan Tetrahymena thermophila. Environmental Sciences: Processes and Impacts, 2013, 15, 244-250.	1.7	26
26	Toxicity of differently sized and charged silver nanoparticles to yeast <i>Saccharomyces cerevisiae</i> BY4741: a nano-biointeraction perspective. Nanotoxicology, 2019, 13, 1041-1059.	1.6	26
27	Stability and toxicity of differently coated selenium nanoparticles under model environmental exposure settings. Chemosphere, 2020, 250, 126265.	4.2	25
28	Profiling of the toxicity mechanisms of coated and uncoated silver nanoparticles to yeast Saccharomyces cerevisiae BY4741 using a set of its 9 single-gene deletion mutants defective in oxidative stress response, cell wall or membrane integrity and endocytosis. Toxicology in Vitro, 2016, 35, 149-162.	1.1	24
29	Study of the toxic effect of short- and medium-chain monocarboxylic acids on the growth of Saccharomyces cerevisiae using the CO2-auxo-accelerostat fermentation system. International Journal of Food Microbiology, 2006, 111, 206-215.	2.1	22
30	Teratogenic hazard of BPEI-coated silver nanoparticles to <i>Xenopus laevis</i> . Nanotoxicology, 2017, 11, 405-418.	1.6	14
31	Rapid Screening for Soil Ecotoxicity with a Battery of Luminescent Bacteria Tests. ATLA Alternatives To Laboratory Animals, 2007, 35, 101-110.	0.7	9
32	Effect of Ozone on Viability of Activated Sludge Detected by Oxygen Uptake Rate (OUR) and Adenosine-5′-triphosphate (ATP) Measurement. Ozone: Science and Engineering, 2010, 32, 408-416.	1.4	9
33	Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles: Magnetic and safety properties. Journal of Magnetism and Magnetic Materials, 2017, 429, 299-304.	1.0	7
34	Visible-Light Active Flexible and Durable Photocatalytic Antibacterial Ethylene-co-vinyl Acetate—Ag/AgCl/α-Fe2O3 Composite Coating. Nanomaterials, 2022, 12, 1984.	1.9	4
35	Charge and size-dependent toxicity of silver nanoparticles to yeast cells. Toxicology Letters, 2014, 229, S194-S195.	0.4	3
36	Bioavailability and toxicity of copper oxide and silver nanoparticles to bacteria, yeasts, crustaceans and protozoa. Toxicology Letters, 2011, 205, S284-S285.	0.4	1

#	Article	IF	CITATIONS
37	The Study of the Fermentative Growth ofSaccharomyces cerevisiae S288C using Auxo-Accelerostat Technique. , 0, , 756-760.		0
38	"Safe-by-design―and "toxic-by design― two approaches for design of novel functional nanomaterials. Toxicology Letters, 2014, 229, S11-S12.	0.4	0