David Pleasure

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6760570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutic Potentials of Poly (ADPâ€Ribose) Polymerase 1 (PARP1) Inhibition in Multiple Sclerosis and Animal Models: Concept Revisiting. Advanced Science, 2022, 9, e2102853.	5.6	9
2	Ablating the Transporter <scp>Sodiumâ€Dependent Dicarboxylate Transporter 3</scp> Prevents Leukodystrophy in Canavan Disease Mice. Annals of Neurology, 2021, 90, 845-850.	2.8	5
3	Reduction in CD11c+ microglia correlates with clinical progression in chronic experimental autoimmune demyelination. Neurobiology of Disease, 2021, 161, 105556.	2.1	10
4	Pathophysiology and Treatment of Canavan Disease. Neurochemical Research, 2020, 45, 561-565.	1.6	10
5	Olig2 regulates terminal differentiation and maturation of peripheral olfactory sensory neurons. Cellular and Molecular Life Sciences, 2020, 77, 3597-3609.	2.4	8
6	Antisense Oligonucleotide Reverses Leukodystrophy in Canavan Disease Mice. Annals of Neurology, 2020, 87, 480-485.	2.8	25
7	Brain Nat8l Knockdown Suppresses Spongiform Leukodystrophy in an Aspartoacylase-Deficient Canavan Disease Mouse Model. Molecular Therapy, 2018, 26, 793-800.	3.7	17
8	New hearts for Friedreich patients. Journal of the Neurological Sciences, 2017, 375, 474-475.	0.3	0
9	Suppressing <i>N</i> -Acetyl-l-Aspartate Synthesis Prevents Loss of Neurons in a Murine Model of Canavan Leukodystrophy. Journal of Neuroscience, 2017, 37, 413-421.	1.7	21
10	Differing intrinsic biological properties between forebrain and spinal oligodendroglial lineage cells. Journal of Neurochemistry, 2017, 142, 378-391.	2.1	12
11	Suppressing N -Acetyl-I-Aspartate Synthesis Prevents Loss of Neurons in a Murine Model of Canavan Leukodystrophy. Journal of Neuroscience, 2017, 37, 413-421.	1.7	4
12	Mice Hemizygous for a Pathogenic Mitofusin-2 Allele Exhibit Hind Limb/Foot Gait Deficits and Phenotypic Perturbations in Nerve and Muscle. PLoS ONE, 2016, 11, e0167573.	1.1	33
13	Precision Medicine for Charcot-Marie-Tooth Disease. JAMA Neurology, 2016, 73, 623.	4.5	0
14	Good Things Come in Threes: Genetically Engineered Neural Stem Cells Mitigate Chronic CNS Autoimmunity. Molecular Therapy, 2016, 24, 1338-1339.	3.7	0
15	Therapeutic depletion of monocyte-derived cells protects from long-term axonal loss in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2016, 290, 36-46.	1.1	33
16	Ablating <scp>N</scp> â€acetylaspartate prevents leukodystrophy in a <scp>C</scp> anavan disease model. Annals of Neurology, 2015, 77, 884-888.	2.8	47
17	Canonical Wnt signaling in the oligodendroglial lineage-puzzles remain. Clia, 2015, 63, 1671-1693.	2.5	111
18	The Future of Research in Neuropathy. JAMA Neurology, 2015, 72, 5.	4.5	1

#	Article	IF	CITATIONS
19	The Subventricular Zone Continues to Generate Corpus Callosum and Rostral Migratory Stream Astroglia in Normal Adult Mice. Journal of Neuroscience, 2015, 35, 3756-3763.	1.7	63
20	A brief review of recent Charcot-Marie-Tooth research and priorities. F1000Research, 2015, 4, 53.	0.8	28
21	The Wnt Effector Transcription Factor 7-Like 2 Positively Regulates Oligodendrocyte Differentiation in a Manner Independent of Wnt/β-Catenin Signaling. Journal of Neuroscience, 2015, 35, 5007-5022.	1.7	80
22	Neuronopathy in the Motor Neocortex in a Chronic Model of Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2014, 73, 335-344.	0.9	8
23	ZPK/DLK and MKK4 Form the Critical Gateway to Axotomy-Induced Motoneuron Death in Neonates. Journal of Neuroscience, 2014, 34, 10729-10742.	1.7	18
24	Pax6 Mediates ß-Catenin Signaling for Self-Renewal and Neurogenesis by Neocortical Radial Glial Stem Cells. Stem Cells, 2014, 32, 45-58.	1.4	47
25	Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Molecular Psychiatry, 2014, 19, 1275-1283.	4.1	175
26	Loss of Wdfy3 in mice alters cerebral cortical neurogenesis reflecting aspects of the autism pathology. Nature Communications, 2014, 5, 4692.	5.8	74
27	Conditional Ablation of Astroglial CCL2 Suppresses CNS Accumulation of M1 Macrophages and Preserves Axons in Mice with MOG Peptide EAE. Journal of Neuroscience, 2014, 34, 8175-8185.	1.7	105
28	Origins and significance of astrogliosis in the multiple sclerosis model, MOG peptide EAE. Journal of the Neurological Sciences, 2013, 333, 55-59.	0.3	25
29	Adenomatous Polyposis Coli Regulates Oligodendroglial Development. Journal of Neuroscience, 2013, 33, 3113-3130.	1.7	102
30	Whither Hope for Pharmacological Treatment of Charcot-Marie-Tooth Disease Type 1A?. JAMA Neurology, 2013, 70, 969.	4.5	6
31	GlyRα1, GAD65, Amphiphysin, and Gephyrin Autoantibodies. JAMA Neurology, 2013, 70, 16.	4.5	1
32	Disruption of NMDA Receptors in Oligodendroglial Lineage Cells Does Not Alter Their Susceptibility to Experimental Autoimmune Encephalomyelitis or Their Normal Development. Journal of Neuroscience, 2012, 32, 639-645.	1.7	74
33	PEDF Is a Novel Oligodendrogenic Morphogen Acting on the Adult SVZ and Corpus Callosum. Journal of Neuroscience, 2012, 32, 12152-12164.	1.7	21
34	IFN-gamma signaling in the central nervous system controls the course of experimental autoimmune encephalomyelitis independently of the localization and composition of inflammatory foci. Journal of Neuroinflammation, 2012, 9, 7.	3.1	51
35	Hypoxic-preconditioning induces neuroprotection against hypoxia–ischemia in newborn piglet brain. Neurobiology of Disease, 2011, 43, 473-485.	2.1	41
36	Advances in Translational Research in Neuromuscular Diseases. Archives of Neurology, 2011, 68, 429.	4.9	2

#	Article	IF	CITATIONS
37	ZPK/DLK, a Mitogen-Activated Protein Kinase Kinase Kinase, Is a Critical Mediator of Programmed Cell Death of Motoneurons. Journal of Neuroscience, 2011, 31, 7223-7228.	1.7	41
38	Macroglial Plasticity and the Origins of Reactive Astroglia in Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2011, 31, 11914-11928.	1.7	59
39	Differing in vitro survival dependency of mouse and rat NG2 ⁺ oligodendroglial progenitor cells. Journal of Neuroscience Research, 2010, 88, 957-970.	1.3	17
40	c- and N-myc Regulate Neural Precursor Cell Fate, Cell Cycle, and Metabolism to Direct Cerebellar Development. Cerebellum, 2010, 9, 537-547.	1.4	44
41	Pyramidal Neurons Are Generated from Oligodendroglial Progenitor Cells in Adult Piriform Cortex. Journal of Neuroscience, 2010, 30, 12036-12049.	1.7	157
42	Oligodendroglial differentiation induces mitochondrial genes and inhibition of mitochondrial function represses oligodendroglial differentiation. Mitochondrion, 2010, 10, 143-150.	1.6	85
43	Initiation and Progression of Axonopathy in Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2009, 29, 14965-14979.	1.7	130
44	Early Postnatal Proteolipid Promoter-Expressing Progenitors Produce Multilineage Cells <i>In Vivo</i> . Journal of Neuroscience, 2009, 29, 7256-7270.	1.7	120
45	Maintenance of the relative proportion of oligodendrocytes to axons even in the absence of BAX and BAK. European Journal of Neuroscience, 2009, 30, 2030-2041.	1.2	16
46	Impaired regenerative response of primary sensory neurons in ZPK/DLK gene-trap mice. Biochemical and Biophysical Research Communications, 2009, 383, 258-262.	1.0	85
47	Bone morphogenetic proteins 4, 6, and 7 are upâ€regulated in mouse spinal cord during experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 2008, 86, 125-135.	1.3	76
48	Characterization of acidâ€sensing ion channel expression in oligodendrocyteâ€lineage cells. Glia, 2008, 56, 1238-1249.	2.5	50
49	Peripheral nerve regeneration is delayed in neuropilin 2–deficient mice. Journal of Neuroscience Research, 2008, 86, 3163-3169.	1.3	26
50	Progress in Periventricular Leukomalacia. Archives of Neurology, 2008, 65, 1291-5.	4.9	137
51	Diagnostic and Pathogenic Significance of Glutamate Receptor Autoantibodies. Archives of Neurology, 2008, 65, 589-92.	4.9	31
52	Astrogliosis in EAE spinal cord: Derivation from radial glia, and relationships to oligodendroglia. Glia, 2007, 55, 57-64.	2.5	94
53	GluR2-free ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors intensify demyelination in experimental autoimmune encephalomyelitis. Journal of Neurochemistry, 2007, 102, 1064-1070.	2.1	18
54	Inflammation in white matter: Clinical and pathophysiological aspects. Mental Retardation and Developmental Disabilities Research Reviews, 2006, 12, 141-146.	3.5	20

#	Article	IF	CITATIONS
55	MEK-ERK Signaling Is Involved in Interferon-Î ³ -induced Death of Oligodendroglial Progenitor Cells*. Journal of Biological Chemistry, 2006, 281, 20095-20106.	1.6	67
56	Chaperoning Motor Neurons. Archives of Neurology, 2005, 62, 1193.	4.9	0
57	Keeping "Trk―of Paraneoplastic Syndromes. Archives of Neurology, 2005, 62, 1508-9.	4.9	0
58	Modulation of Sciatic Nerve Expression of Class 3 Semaphorins by Nerve Injury. Neurochemical Research, 2004, 29, 1153-1159.	1.6	42
59	Acidosis has opposite effects on neuronal survival during hypoxia and reoxygenation. Journal of Neurochemistry, 2003, 84, 1018-1027.	2.1	31
60	Bcl-2-related protein family gene expression during oligodendroglial differentiation. Journal of Neurochemistry, 2003, 85, 1500-1512.	2.1	61
61	Induction of neuropilins-1 and -2 and their ligands, Sema3A, Sema3F, and VEGF, during Wallerian degeneration in the peripheral nervous system. Experimental Neurology, 2003, 183, 489-498.	2.0	49
62	Prospects for Vascular Endothelial Growth Factor Neurotherapeutics. Archives of Neurology, 2002, 59, 692.	4.9	1
63	Neuronal Formation of Free Radicals Plays a Minor Role in Hypoxic Cell Death in Human NT2-N Neurons. Pediatric Research, 2002, 51, 136-143.	1.1	15
64	Tumor Necrosis Factor α Increases Neuronal Vulnerability to Excitotoxic Necrosis by Inducing Expression of the AMPA–Glutamate Receptor Subunit GluR1 via an Acid Sphingomyelinase- and NF-κB-Dependent Mechanism. Neurobiology of Disease, 2002, 11, 199-213.	2.1	70
65	Type-2 astrocyte-like cells are more resistant than oligodendrocyte-like cells against non-N-methyl-D-aspartate glutamate receptor-mediated excitotoxicity. Journal of Neuroscience Research, 2002, 70, 588-598.	1.3	11
66	AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes. Journal of Neurochemistry, 2002, 81, 390-402.	2.1	141
67	Inhibition of Astrocyte Clutamine Production by α-Ketoisocaproic Acid. Journal of Neurochemistry, 2002, 63, 1508-1515.	2.1	33
68	Astrocyte Leucine Metabolism: Significance of Branched-Chain Amino Acid Transamination. Journal of Neurochemistry, 2002, 66, 378-385.	2.1	115
69	AMPA Receptor-Mediated Excitotoxicity in Human NT2-N Neurons Results from Loss of Intracellular Ca2+ Homeostasis Following Marked Elevation of Intracellular Na+. Journal of Neurochemistry, 2002, 71, 112-124.	2.1	38
70	Caspase-3 Expression by Cerebellar Granule Neurons Is Regulated by Calcium and Cyclic AMP. Journal of Neurochemistry, 2002, 73, 568-577.	2.1	87
71	Cyclic GMP/Cyclic GMP-Dependent Protein Kinase System Prevents Excitotoxicity in an Immortalized Oligodendroglial Cell Line. Journal of Neurochemistry, 2001, 74, 633-640.	2.1	34
72	Axon-Schwann cell interactions regulate the expression of fibroblast growth factor-5 (FGF-5). Journal of Neuroscience Research, 2001, 66, 16-22.	1.3	14

#	Article	IF	CITATIONS
73	Peripheral Neuropathy as the First Clinical Manifestation of Wegener Granulomatosis. Archives of Neurology, 2001, 58, 1204.	4.9	7
74	Analysis of oligodendroglial differentiation using cDNA arrays. Journal of Neuroscience Research, 2000, 59, 430-435.	1.3	23
75	Stage-specific effects of bone morphogenetic proteins on the oligodendrocyte lineage. , 2000, 43, 1-17.		125
76	Neurotrophin-3 (NT-3) diminishes susceptibility of the oligodendroglial lineage to AMPA glutamate receptor-mediated excitotoxicity. Journal of Neuroscience Research, 2000, 60, 725-732.	1.3	41
77	Early migratory rat neural crest cells express functional gap junctions: Evidence that neural crest cell survival requires gap junction function. Journal of Neuroscience Research, 2000, 61, 605-615.	1.3	42
78	Non-N-methyl-d-aspartate glutamate receptors mediate oxygen–glucose deprivation-induced oligodendroglial injury. Brain Research, 2000, 854, 207-215.	1.1	53
79	Analysis of oligodendroglial differentiation using cDNA arrays. Journal of Neuroscience Research, 2000, 59, 430.	1.3	1
80	Stage-specific effects of bone morphogenetic proteins on the oligodendrocyte lineage. , 2000, 43, 1.		1
81	Stage-specific effects of bone morphogenetic proteins on the oligodendrocyte lineage. , 2000, 43, 1.		3
82	Neurotrophin-3 (NT-3) diminishes susceptibility of the oligodendroglial lineage to AMPA glutamate receptor-mediated excitotoxicity. , 2000, 60, 725.		2
83	Microglia Express CCR5, CXCR4, and CCR3, but of These, CCR5 Is the Principal Coreceptor for Human Immunodeficiency Virus Type 1 Dementia Isolates. Journal of Virology, 1999, 73, 205-213.	1.5	293
84	Hereditary Motor and Sensory Neuropathy. Archives of Neurology, 1999, 56, 1195.	4.9	1
85	ZPK inhibits PKA induced transcriptional activation by CREB and blocks retinoic acid induced neuronal differentiation. Oncogene, 1999, 18, 4474-4484.	2.6	17
86	Schwann cell undergoes apoptosis during experimental allergic neuritis (EAN). Journal of the Neurological Sciences, 1998, 161, 29-35.	0.3	27
87	Cyclic AMPâ€Elevating Agents Prevent Oligodendroglial Excitotoxicity. Journal of Neurochemistry, 1998, 70, 2416-2423.	2.1	37
88	Hypoxic Cell Death in Human NT2â€N Neurons: Involvement of NMDA and Nonâ€NMDA Glutamate Receptors. Journal of Neurochemistry, 1998, 71, 1544-1553.	2.1	38
89	The antioxidants trolox and rutin protect human NT2-N neurons during hypoxia. Pediatric Research, 1998, 44, 421-421.	1.1	2
90	Immunocytochemical expression of human muscle cell p75 neurotrophin receptor is down-regulated by cyclic adenosine 3′,5′-monophosphate. Neuroscience Letters, 1997, 234, 79-82.	1.0	3

#	Article	IF	CITATIONS
91	Expression of glutamic acid decarboxylase during human neuronal differentiation: studies using the NTera-2 culture system. Brain Research, 1997, 767, 333-339.	1.1	22
92	Expression of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptor genes in neuroblastoma, medulloblastoma, and other cell lines. Journal of Neuroscience Research, 1996, 46, 164-172.	1.3	70
93	Pathophysiology of oligodendroglial excitotoxicity. Journal of Neuroscience Research, 1996, 46, 427-437.	1.3	127
94	Re-entry into the cell cycle is required for bFGF-induced oligodendroglial dedifferentiation and survival. , 1996, 46, 456-464.		56
95	Expression of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptor genes in neuroblastoma, medulloblastoma, and other cell lines. , 1996, 46, 164.		1
96	Pathophysiology of oligodendroglial excitotoxicity. , 1996, 46, 427.		8
97	Reâ€entry into the cell cycle is required for bFGFâ€induced oligodendroglial dedifferentiation and survival. Journal of Neuroscience Research, 1996, 46, 456-464.	1.3	1
98	Apoptosis occurs in the oligodendroglial lineage, and is prevented by basic fibroblast growth factor. Journal of Neuroscience Research, 1995, 40, 306-317.	1.3	103
99	Low-affinity nerve growth factor receptor expression in sciatic nerve during P2-peptide induced experimental allergic neuritis. Neuroscience Letters, 1995, 199, 135-138.	1.0	19
100	αâ€Aminoâ€3â€Hydroxyâ€5â€Methylâ€4â€Isoxazolepropionate (AMPA) Receptors Mediate Excitotoxicity in the Oligodendroglial Lineage. Journal of Neurochemistry, 1995, 64, 2442-2448.	2.1	127
101	Developmental expression of P0 mRNA and P0 protein in the sciatic nerve and the spinal nerve roots of the rat. Journal of Neurocytology, 1994, 23, 249-257.	1.6	21
102	Expression of the low-affinity NGF receptor during human muscle development, regeneration, and in tissue culture. Muscle and Nerve, 1994, 17, 276-284.	1.0	30
103	Expression of PO protein mRNA along rat sciatic nerve during development. Developmental Brain Research, 1994, 83, 285-288.	2.1	6
104	Fc receptor for IgG (FcR) on rat microglia. Journal of Neuroimmunology, 1994, 49, 19-24.	1.1	62
105	The expression of a NMDA receptor gene in guinea-pig myenteric plexus. NeuroReport, 1994, 5, 973-976.	0.6	18
106	Expression of Nonâ€NMDA Glutamate Receptor Channel Genes by Clonal Human Neurons. Journal of Neurochemistry, 1994, 63, 482-489.	2.1	54
107	Interrelationships of Leucine and Glutamate Metabolism in Cultured Astrocytes. Journal of Neurochemistry, 1994, 62, 1192-1202.	2.1	88
108	Cerebral Aspartate Utilization: Near-Equilibrium Relationships in Aspartate Aminotransferase Reaction. Journal of Neurochemistry, 1993, 60, 1696-1706.	2.1	33

Brain Clutamate Metabolism: Neuronal-Astroglial Relationships. Developmental Neuroscience, 1993, 15. Brain Clutamate Metabolism: Neuronal-Astroglial Relationships. Progress in Brain Research, 1992, 43, 213-224. Chapter 1 B: Nitrogen metabolism: neuronal-astroglial relationships. Progress in Brain Research, 1992, 44, 213-224. Peripheral nervous system (PNS) expression of mRNAe encoding myelin proteins and Fc P RIII during experimental allergic neuronal-astroglial relationships. Progress in Brain Research, 1992, 14, 43-69. Receptors, Journal of Two Neuroblastoma Cell Lines Expressing Recombinant Nerve Growth Factor Receptors. Journal of Neurochemistry, 1991, 56, 67-74. Oligodendroglia Express PDCF ?-Receptor Protein and Are Stimulated to Proliferate by PDCF. Annals of the New York Academy of Sciences, 1990, 605, 71-80. Distribution of PLP and POmSNA during fait Peripheral Nerve Development. Annals of the New York Academy of Sciences, 1990, 605, 71-80. Effects of palmitate on astrocyte amino acid contents. Neurochemical Research, 1989, 14, 367-370. Effects of palmitate on astrocyte amino acid contents. Neurochemical Research, 1989, 14, 367-370. Regulation of Myelin POClycoprotein Synthesis in Cultured Rat Schwam Cells and Continuous Rat PNS Cell Lines, Journal of Neurochemistry, 1998, 51, 566-571. Regulation of Ageine process low affinity receptors for nerve growth factor. Brain Research, 1988, 51, 843-850. Resultation of rat Schwann cells express low affinity receptors for nerve growth factor. Brain Research, 1986, 397, 238-244. Cells CMMP Analogue Induces Synthesis	IF	CITATIONS
110 Chapter 18: Ntrogen metabolism: neuronal-astroglial relationships. Progress in Brain Research, 1992, 44, 213-224. 111 Peripheral nervous system (PNS) expression of mRNAs encoding myelin proteins and Fc I ³ Rill during experimental allergic neurots. Journal of NeuroImmunology, 1992, 41, 43-49. 112 Characterization of Two Neuroblastoma Cell Lines Expressing Recombinant Nerve Growth Factor Receptors. Journal of NeuroImmitry, 1991, 56, 67-74. 110 Clutathone Turnever In Cultured Astrocytes: Studies with [15N]Clutamate. Journal of 113 Clutathone Turnever In Cultured Astrocytes: Studies with [15N]Clutamate. Journal of 114 the New York Academy of Sciences, 1990, 605, 71-80. 115 Digodendrogila Express PDGF 2-Receptor Protein and Are Stimulated to Proliferate by PDGF. Annals of the New York Academy of Sciences, 1990, 605, 71-80. 115 Distribution of PLP and POmRNA during Ext Peripheral Nerve Development. Annals of the New York Academy of Sciences, 1990, 605, 71-80. 116 Effects of palmitate on astrocyte amino acid contents. Neurochemical Research, 1989, 14, 367-370. 117 Expression of nerve growth factor receptor in human peripheral neuropathies. Annals of Neurology, 1988, 24, 64-72. 118 Regulation of Myelin POClycoprotein Synthesis in Cultured Rat Schwann Cells and Continuous Rat PNS Cell Lines, Journal of Neurochemistry, 1988, 51, 566-571. 119 Astrocyte Metabolism of 115NIClutamine: Implications for the Glutamine-Glutamate Cycle. Journal of Ne	1.0	84
111 Pertpheral nervous system (PNS) expression of mRNAs encoding myelin proteins and Fc P Rill during experimental allergic neuritis. Journal of Neuroimmunology, 1992, 41, 43:49. 112 Characterization of Two Neuroblastoma Cell Lines Expressing Recombinant Nerve Growth Factor Receptors. Journal of Neurochemistry, 1991, 56, 67:74. 113 Clutathione Turnover in Cultured Astrocytes: Studies with [15N]Cultamate. Journal of Neurochemistry, 1990, 55, 137-145. 114 Oligodendroglia Express PDCF ?Receptor Protein and Are Stimulated to Proliferate by PDCF. Annals of the New York Academy of Sciences, 1990, 605, 71-80. 115 Distribution of PLP and POmRNA during Rat Pertpheral Nerve Development. Annals of the New York Academy of Sciences, 1990, 605, 375-376. 116 Effects of palmitate on astrocyte amino acid contents. Neurochemical Research, 1989, 14, 367-370. 117 Expression of nerve growth factor receptor in human peripheral neuropathles. Annals of Neurology, 1988, 24, 64-72. 118 Regulation of Myelin POClycoprotein Synthesis in Cultured Rat Schwann Cells and Continuous Rat PNS Cell Lines. Journal of Neurochemistry, 1988, 51, 566-571. 119 Astrocyte Metabolism of [15N]Cultamine: Implications for the Clutamine-Clutamate Cycle. Journal of Neurochemistry, 1988, 50, 190-194. 120 Cultured rat Schwann cells express low affinity receptors for nerve growth factor. Brain Research, 1987, 436, 113-119. 121 Cultured rat Schwann cells express low affinity receptors for nerve growth factor. Brain Research, 1987, 436, 113	0.9	21
112Characterization of Two Neuroblastoma Cell Lines Expressing Recombinant Nerve Growth Factor Receptors. Journal of Neurochemistry, 1991, 56, 67-74.113Clutathione Turnover in Cultured Astrocytes: Studies with [15N]Clutamate. Journal of Neurochemistry, 1990, 55, 137-145.114Oligodendroglia Express PDCF 7.Receptor Protein and Are Stimulated to Proliferate by PDCF. Annals of the New York Academy of Sciences, 1990, 605, 71-80.115Distribution of PLP and POm/RNA during Bat Peripheral Nerve Development. Annals of the New York Academy of Sciences, 1990, 605, 375-376.116Effects of palmitate on astrocyte amino acid contents. Neurochemical Research, 1989, 14, 367-370.117Ergression of nerve growth factor receptor in human peripheral neuropathies. Annals of Neurology, 1988, 24, 64-72.118Regulation of Myelin POG/ycoprotein Synthesis in Cultured Rat Schwann Cells and Continuous Rat PNS Cell Lines. Journal of Neurochemistry, 1988, 50, 190-194.119Actocyte Metabolism of [15N]Clutamine: Implications for the Clutamine-Clutamate Cycle. Journal of Neurochemistry, 1988, 50, 190-194.119Cultured rat Schwann cells express low affinity receptors for nerve growth factor. Brain Research, 1987, 436, 113-119.119Characterization of rat schwannoma-schwann cell hybrids. Brain Research, 1986, 397, 238-244.119The Nerve Growth Factor Receptor in Normal and Transformed Neural Crest Cells. Annals of the New York Academy of Sciences, 1986, 486, 115-123.119Schwann-Like Cells Cultured from Human Dermal Neurofibromas. Annals of the New York Academy of Sciences, 1986, 486, 227-240.119Schwann cell galactocerebroside of umyvelinated fibers is inducible by derivatives of aden	1.1	8
113Glutathione Turnover in Cultured Astrocytes: Studies with [15N]Glutamate. Journal of Neurochemistry, 1990, 55, 137-145.114Oligodendroglia Express PDGF ?Receptor Protein and Are Stimulated to Proliferate by PDGF. Annals of the New York Academy of Sciences, 1990, 605, 771-80.115Distribution of PLP and POmRNA during Rat Peripheral Nerve Development. Annals of the New York Academy of Sciences, 1990, 605, 375-376.116Effects of palmitate on astrocyte amino acid contents. Neurochemical Research, 1989, 14, 367-370.117Expression of nerve growth factor receptor in human peripheral neuropathies. Annals of Neurology, 1988, 24, 64-72.118Regulation of Myelin POGlycoprotein Synthesis in Cultured Rat Schwann Cells and Continuous Rat PNS Cell Lines. Journal of Neurochemistry, 1988, 51, 566-571.119Astrocyte Metabolism of [15N]Glutamine: Implications for the Glutamine-Glutamate Cycle. Journal of Neurochemistry, 1988, 50, 190-194.120Cultured rat Schwann cells express low affinity receptors for nerve growth factor. Brain Research, 1987, 436, 113-119.121Cultured rat Schwann cells express low affinity receptors for nerve growth factor. Brain Research, 1987, 436, 113-119.122Characterization of rat schwannoma-schwann cell hybrids. Brain Research, 1986, 397, 238-244.123The Nerve Growth Factor Receptor in Normal and Transformed Neural Crest Cells. Annals of the New York Academy of Sciences, 1986, 486, 115-123.124Schwann-Like Cells Cultured from Human Dermal Neurofibromas Annals of the New York Academy of Sciences, 1986, 486, 227-240.125Schwann cell responses to cyclic AMP: Proliferation. chance in shane. and appearance of surface126<	2.1	16
114Oligodendroglia Express PDCF 2-Receptor Protein and Are Stimulated to Proliferate by PDCF. Annals of the New York Academy of Sciences, 1990, 605, 71-80.115Distribution of PLP and POmRNA during Rat Peripheral Nerve Development. Annals of the New York Academy of Sciences, 1990, 605, 375-376.116Effects of palmitate on astrocyte amino acid contents. Neurochemical Research, 1989, 14, 367-370.117Expression of nerve growth factor receptor in human peripheral neuropathies. Annals of Neurology, 1988, 24, 64-72.118Regulation of Myelin POGlycoprotein Synthesis in Cultured Rat Schwann Cells and Continuous Rat PNS Cell Lines. Journal of Neurochemistry, 1988, 51, 566-571.119Astrocyte Metabolism of [15N]Clutamine: Implications for the Clutamine-Clutamate Cycle. Journal of Neurochemistry, 1988, 50, 190-194.120AcCyclic AMP Analogue Induces Synthesis of a Myelin-Specific Clycoprotein by Cultured Schwann Cells. Journal of Neurochemistry, 1988, 50, 190-194.121Cultured rat Schwann cells express low affinity receptors for nerve growth factor. Brain Research, 1987, 436, 113-119.122Characterization of rat schwannoma-schwann cell hybrids. Brain Research, 1986, 397, 238-244.123The Nerve Growth Factor Receptor in Normal and Transformed Neural Crest Cells. Annals of the New York Academy of Sciences, 1986, 486, 115-123.124Schwann-Like Cells Cultured from Human Dermal Neurofibromas Annals of the New York Academy of Sciences, 1986, 486, 227-240.125Schwann cell galactocerebroside of unmyelinated fibers is Inducible by derivatives of adenosine 3464-562-monophosphate. Neuroscience Letters, 1986, 72, 253-257.126Schwann cell responses to cyclic AMP: Proliferat	2.1	161
115Distribution of PLP and POmRNA during Rat Peripheral Nerve Development. Annals of the New York Academy of Sciences, 1990, 605, 375-376.116Effects of palmitate on astrocyte amino acid contents. Neurochemical Research, 1989, 14, 367-370.117Expression of nerve growth factor receptor in human peripheral neuropathies. Annals of Neurology, 1988, 24, 64-72.118Regulation of Myelin POGlycoprotein Synthesis in Cultured Rat Schwann Cells and Continuous Rat PNS Cell Lines. Journal of Neurochemistry, 1988, 51, 566-571.119Astrocyte Metabolism of [15N]Clutamine: Implications for the Clutamine-Clutamate Cycle. Journal of Neurochemistry, 1988, 50, 190-194.120Cyclic AMP Analogue Induces Synthesis of a Myelin-Specific Glycoprotein by Cultured Schwann Cells. Journal of Neurochemistry, 1988, 50, 190-194.121Cultured rat Schwann cells express low affinity receptors for nerve growth factor. Brain Research, 1987, 436, 113-119.122Characterization of rat schwannoma-schwann cell hybrids. Brain Research, 1986, 397, 238-244.123The Nerve Growth Factor Receptor in Normal and Transformed Neural Crest Cells. Annals of the New York Academy of Sciences, 1986, 486, 115-123.124Schwann-Like Cells Cultured from Human Dermal Neurofibromas Annals of the New York Academy of Sciences, 1986, 486, 227-240.125Schwann cell galactocerebroside of unmyelinated fibers is inducible by derivatives of adenosine 362-,5862-monophosphate. Neuroscience Letters, 1986, 72, 253-257.125Schwann cell responses to cyclic AMP. Proliferation, chance in shane, and annearance of surface	1.8	13
116Effects of palmitate on astrocyte amino acid contents. Neurochemical Research, 1989, 14, 367-370.117Expression of nerve growth factor receptor in human peripheral neuropathies. Annals of Neurology, 1988, 24, 64-72.118Regulation of Myelin POClycoprotein Synthesis in Cultured Rat Schwann Cells and Continuous Rat PNS Cell Lines. Journal of Neurochemistry, 1988, 51, 566-571.119Astrocyte Metabolism of [15N] Clutamine: Implications for the Clutamine-Clutamate Cycle. Journal of Neurochemistry, 1988, 50, 190-194.120A Cyclic AMP Analogue Induces Synthesis of a Myelin-Specific Clycoprotein by Cultured Schwann Cells. Journal of Neurochemistry, 1988, 50, 190-194.121Cultured rat Schwann cells express low affinity receptors for nerve growth factor. Brain Research, 1987, 436, 113-119.122Characterization of rat schwannoma-schwann cell hybrids. Brain Research, 1986, 397, 238-244.123The Nerve Growth Factor Receptor in Normal and Transformed Neural Crest Cells. Annals of the New York Academy of Sciences, 1986, 486, 115-123.124Schwann-Like Cells Cultured from Human Dermal Neurofibromas. Annals of the New York Academy of Sciences, 1986, 486, 227-240.125Schwann cell galactocerebroside of unmyelinated fibers is inducible by derivatives of adenosine 38c2/5462-monophosphate. Neuroscience Letters, 1986, 72, 253-257.	1.8	0
117Expression of nerve growth factor receptor in human peripheral neuropathies. Annals of Neurology, 1988, 24, 64-72.118Regulation of Myelin POClycoprotein Synthesis in Cultured Rat Schwann Cells and Continuous Rat PNS Cell Lines. Journal of Neurochemistry, 1988, 51, 566-571.119Astrocyte Metabolism of [15N]Clutamine: Implications for the Clutamine-Clutamate Cycle. Journal of Neurochemistry, 1988, 51, 843-850.120A Cyclic AMP Analogue Induces Synthesis of a Myelin-Specific Clycoprotein by Cultured Schwann Cells. Journal of Neurochemistry, 1988, 50, 190-194.121Cultured rat Schwann cells express low affinity receptors for nerve growth factor. Brain Research, 1987, 436, 113-119.122Characterization of rat schwannoma-schwann cell hybrids. Brain Research, 1986, 397, 238-244.123The Nerve Growth Factor Receptor in Normal and Transformed Neural Crest Cells. Annals of the New York Academy of Sciences, 1986, 486, 115-123.124Schwann-Like Cells Cultured from Human Dermal Neurofibromas Annals of the New York Academy of Sciences, 1986, 486, 227-240.125Schwann cell galactocerebroside of unmyelinated fibers is inducible by derivatives of adenosine 3462,5462-monophosphate. Neuroscience Letters, 1986, 72, 253-257.126Schwann cell responses to cyclic AMP: Proliferation, change in shape, and appearance of surface	1.6	6
118Regulation of Myelin POGlycoprotein Synthesis in Cultured Rat Schwann Cells and Continuous Rat PNS Cell Lines. Journal of Neurochemistry, 1988, 51, 566-571.119Astrocyte Metabolism of [15N] Glutamine: Implications for the Glutamine-Glutamate Cycle. Journal of Neurochemistry, 1988, 51, 843-850.120A Cyclic AMP Analogue Induces Synthesis of a Myelin-Specific Glycoprotein by Cultured Schwann Cells. Journal of Neurochemistry, 1988, 50, 190-194.121Cultured rat Schwann cells express low affinity receptors for nerve growth factor. Brain Research, 1987, 436, 113-119.122Characterization of rat schwannoma-schwann cell hybrids. Brain Research, 1986, 397, 238-244.123The Nerve Growth Factor Receptor in Normal and Transformed Neural Crest Cells. Annals of the New York Academy of Sciences, 1986, 486, 115-123.124Schwann-Like Cells Cultured from Human Dermal Neurofibromas Annals of the New York Academy of Sciences, 1986, 486, 227-240.125Schwann cell galactocerebroside of unmyelinated fibers is inducible by derivatives of adenosine 3a62,5a62-monophosphate. Neuroscience Letters, 1986, 72, 253-257.	2.8	87
 Astrocyte Metabolism of [15N]Glutamine: Implications for the Glutamine-Glutamate Cycle. Journal of Neurochemistry, 1988, 51, 843-850. A Cyclic AMP Analogue Induces Synthesis of a Myelin-Specific Glycoprotein by Cultured Schwann Cells. Journal of Neurochemistry, 1988, 50, 190-194. Cultured rat Schwann cells express low affinity receptors for nerve growth factor. Brain Research, 1987, 436, 113-119. Characterization of rat schwannoma-schwann cell hybrids. Brain Research, 1986, 397, 238-244. The Nerve Growth Factor Receptor in Normal and Transformed Neural Crest Cells. Annals of the New York Academy of Sciences, 1986, 486, 115-123. Schwann-Like Cells Cultured from Human Dermal Neurofibromas Annals of the New York Academy of Sciences, 1986, 486, 227-240. Schwann cell galactocerebroside of unmyelinated fibers is inducible by derivatives of adenosine 3&c², 5&c²-monophosphate. Neuroscience Letters, 1986, 72, 253-257. 	2.1	16
 A Cyclic AMP Analogue Induces Synthesis of a Myelin-Specific Glycoprotein by Cultured Schwann Cells. Journal of Neurochemistry, 1988, 50, 190-194. Cultured rat Schwann cells express low affinity receptors for nerve growth factor. Brain Research, 1987, 436, 113-119. Characterization of rat schwannoma-schwann cell hybrids. Brain Research, 1986, 397, 238-244. The Nerve Growth Factor Receptor in Normal and Transformed Neural Crest Cells. Annals of the New York Academy of Sciences, 1986, 486, 115-123. Schwann-Like Cells Cultured from Human Dermal Neurofibromas Annals of the New York Academy of Sciences, 1986, 486, 227-240. Schwann cell galactocerebroside of unmyelinated fibers is inducible by derivatives of adenosine 3a6², 5a6²-monophosphate. Neuroscience Letters, 1986, 72, 253-257. 	2.1	115
 Cultured rat Schwann cells express low affinity receptors for nerve growth factor. Brain Research, 1987, 436, 113-119. Characterization of rat schwannoma-schwann cell hybrids. Brain Research, 1986, 397, 238-244. The Nerve Growth Factor Receptor in Normal and Transformed Neural Crest Cells. Annals of the New York Academy of Sciences, 1986, 486, 115-123. Schwann-Like Cells Cultured from Human Dermal Neurofibromas Annals of the New York Academy of Sciences, 1986, 486, 227-240. Schwann cell galactocerebroside of unmyelinated fibers is inducible by derivatives of adenosine 3â€2,5â€2-monophosphate. Neuroscience Letters, 1986, 72, 253-257. 	2.1	40
 122 Characterization of rat schwannoma-schwann cell hybrids. Brain Research, 1986, 397, 238-244. 123 The Nerve Growth Factor Receptor in Normal and Transformed Neural Crest Cells. Annals of the New York Academy of Sciences, 1986, 486, 115-123. 124 Schwann-Like Cells Cultured from Human Dermal Neurofibromas Annals of the New York Academy of Sciences, 1986, 486, 227-240. 125 Schwann cell galactocerebroside of unmyelinated fibers is inducible by derivatives of adenosine 3å€²,5å€²-monophosphate. Neuroscience Letters, 1986, 72, 253-257. Schwann cell responses to cyclic AMP: Proliferation, change in shape, and appearance of surface. 	1.1	49
 The Nerve Growth Factor Receptor in Normal and Transformed Neural Crest Cells. Annals of the New York Academy of Sciences, 1986, 486, 115-123. Schwann-Like Cells Cultured from Human Dermal Neurofibromas Annals of the New York Academy of Sciences, 1986, 486, 227-240. Schwann cell galactocerebroside of unmyelinated fibers is inducible by derivatives of adenosine 3â€²,5â€²-monophosphate. Neuroscience Letters, 1986, 72, 253-257. Schwann cell responses to cyclic AMP: Proliferation, change in shape, and appearance of surface. 	1.1	3
 Schwann-Like Cells Cultured from Human Dermal Neurofibromas Annals of the New York Academy of Sciences, 1986, 486, 227-240. Schwann cell galactocerebroside of unmyelinated fibers is inducible by derivatives of adenosine 3â€²,5â€²-monophosphate. Neuroscience Letters, 1986, 72, 253-257. Schwann cell responses to cyclic AMP: Proliferation, change in shape, and appearance of surface. 	1.8	18
 Schwann cell galactocerebroside of unmyelinated fibers is inducible by derivatives of adenosine 3â€²,5â€²-monophosphate. Neuroscience Letters, 1986, 72, 253-257. Schwann cell responses to cyclic AMP: Proliferation, change in shape, and appearance of surface 	1.8	45
Schwann cell responses to cyclic AMP: Proliferation, change in shape, and appearance of surface	1.0	6
galactocerebroside. Brain Research, 1986, 362, 23-32.	1.1	146

#	Article	IF	CITATIONS
127	Incorporation of Tritiated Galactose into Galactocerebroside by Cultured Rat Oligodendrocytes: Effects of Cyclic Adenosine 3',5'-Monophosphate Analogues. Journal of Neurochemistry, 1986, 46, 300-302.	2.1	27
128	Immunochemical Characterization of Peripheral Nervous System Myelin 170,000â€M _r Glycoprotein. Journal of Neurochemistry, 1986, 47, 811-818.	2.1	14
129	Tissue Culture Studies of Schwann Cell Proliferation and Differentiation. Developmental Neuroscience, 1985, 7, 364-373.	1.0	31
130	Experimental lead neuropathy: Inorganic lead inhibits proliferation but not diffrentiation of Schwann cells. Annals of Neurology, 1985, 17, 462-468.	2.8	14
131	Tissue culture studies of neurofibromatosis: Effects of axolemmal fragments and cyclic adenosine 3?,5?-monophosphate analogues on proliferation of schwann-like and fibroblast-like neurofibroma cells. Annals of Neurology, 1985, 18, 68-73.	2.8	17
132	Production and Characterization of Monoclonal Antibodies to Peripheral and Central Nervous System Myelin. Journal of Neurochemistry, 1984, 43, 394-400.	2.1	23
133	Metabolism of15NH3in Organotypic Cerebellar Explants and Cultured Astrocytes: Studies with Gas Chromatography-Mass Spectrometry. Journal of Neurochemistry, 1984, 42, 283-286.	2.1	15
134	Human alpha-fetoprotein-rich fraction inhibits galactocerebroside antibody-mediated lysis of oligodendrocyte in vitro. Annals of Neurology, 1984, 15, 171-180.	2.8	6
135	Axolemma is a mitogen for human Schwann cells. Annals of Neurology, 1984, 15, 449-452.	2.8	42
136	Inositol uptake by cultured isolated rat Schwann cells. Biochemical and Biophysical Research Communications, 1984, 120, 486-492.	1.0	34
137	Astroglial proliferation and phenotype are modulated by neuronal plasma membrane. Brain Research, 1984, 324, 175-179.	1.1	48
138	Peripheral Nervous System Myelin and Schwann Cell Glycoproteins: Identification by Lectin Binding and Partial Purification of a Peripheral Nervous System Myelin-Specific 170,000 Molecular Weight Glycoprotein. Journal of Neurochemistry, 1983, 41, 1277-1285.	2.1	32
139	Specific and potent mitogenic effect of axolemmal fraction on schwann cells from rat sciatic nerves in serum-containing and defined media. Brain Research, 1983, 280, 263-275.	1.1	78
140	[15 N] leucine as a source of [15 N] glutamate in organotypic cerebellar explants. Biochemical and Biophysical Research Communications, 1983, 115, 174-179.	1.0	59
141	Sensory Neuropathy from Pyridoxine Abuse. New England Journal of Medicine, 1983, 309, 445-448.	13.9	705
142	Long-term Culture of Oligodendrocytes Isolated from Rat Corpus Callosum by Percoll Density Gradient. Journal of Neuropathology and Experimental Neurology, 1983, 42, 16-28.	0.9	91
143	CSF antibodies to myelin basic protein and oligodendrocytes in multiple sclerosis and other neurological diseases. Acta Neurologica Scandinavica, 1983, 67, 338-347.	1.0	47
144	Oligoclonal IgG in the cerebrospinal fluid of guinea pigs with acute experimental allergic encephalomyelitis. Journal of the Neurological Sciences, 1982, 53, 433-441.	0.3	5

#	Article	IF	CITATIONS
145	Schwann Cell Surface Proteins and Glycoproteins. Journal of Neurochemistry, 1982, 39, 486-492.	2.1	11
146	Oligodendroglial Glycerophospholipid Synthesis: Incorporation of Radioactive Precursors into Ethanolamine Glycerophospholipids by Calf Oligodendroglia Prepared by a Percoll Procedure and Maintained in Suspension Culture. Journal of Neurochemistry, 1981, 37, 452-460.	2.1	27
147	ACETOACETATE AND d-(-)-BETA-HYDROXYBUTYRATE AS PRECURSORS FOR STEROL SYNTHESIS BY CALF OLIGODENDROCYTES IN SUSPENSION CULTURE: EXTRAMITOCHONDRIAL PATHWAY FOR ACETOACETATE METABOLISM. Journal of Neurochemistry, 1979, 32, 1447-1450.	2.1	46
148	Immune response to isolated oligodendrocytes. Journal of the Neurological Sciences, 1979, 43, 157-167.	0.3	11
149	Tissue culture analysis of neurogenesis. II. Lipid-free medium retards myelination in mouse spinal cord cultures. Brain Research, 1978, 157, 206-211.	1.1	6
150	Erythrocyte cation-activated adenosine triphosphatases in duchenne muscular dystrophy. Journal of the Neurological Sciences, 1977, 32, 361-369.	0.3	49
151	Lipid synthesis by an oligodendroglial fraction in suspension culture. Brain Research, 1977, 134, 377-382.	1.1	48
152	Enzyme markers for myelination of mouse cerebellum in vivo and in tissue culture. Brain Research, 1976, 104, 193-196.	1.1	18
153	Sterol synthesis by myelinating cultures of mouse spinal cord. Brain Research, 1976, 103, 117-126.	1.1	24
154	SLOWING OF FAST AXOPLASMIC TRANSPORT IN ACRYLAMIDE NEUROPATHY. Journal of Neuropathology and Experimental Neurology, 1976, 35, 319.	0.9	21