
Guoqing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6760481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantifying the effects of climate and watershed structure changes on runoff variations in the Tao River basin by using three different methods under the Budyko framework. Theoretical and Applied Climatology, 2023, 151, 953-966.	1.3	4
2	Enhanced LSTM Model for Daily Runoff Prediction in the Upper Huai River Basin, China. Engineering, 2023, 24, 229-238.	3.2	14
3	Geomatic-Based Flood Loss Assessment and Its Application in an Eastern City of China. Water (Switzerland), 2022, 14, 126.	1.2	6
4	On the attribution of changing water surface evaporation across China. Journal of Hydrology: Regional Studies, 2022, 40, 100991.	1.0	0
5	Long Term Observation of Fractional Vegetation Cover in Qingyang of Gansu Province and Its Response to Climate Change. Atmosphere, 2022, 13, 288.	1.0	2
6	An Exponential Filter Model-Based Root-Zone Soil Moisture Estimation Methodology from Multiple Datasets. Remote Sensing, 2022, 14, 1785.	1.8	4
7	Hydrological Change Detection and Process Simulation for a Semi-Arid Catchment in Northern China. Water (Switzerland), 2022, 14, 1267.	1.2	0
8	Impact of Climate Change on Water Resources in the Western Route Areas of the South-to-North Water Diversion Project. Atmosphere, 2022, 13, 799.	1.0	2
9	Comparison of the Performance of IMERG Products and Interpolation-Based Precipitation Estimates in the Middle Reaches of Yellow River Basin. Water (Switzerland), 2022, 14, 1503.	1.2	5
10	An Analysis of the Impact of Groundwater Overdraft on Runoff Generation in the North China Plain with a Hydrological Modeling Framework. Water (Switzerland), 2022, 14, 1758.	1.2	2
11	Investigating Impacts of Climate Change on Runoff from the Qinhuai River by Using the SWAT Model and CMIP6 Scenarios. Water (Switzerland), 2022, 14, 1778.	1.2	10
12	Quantify Runoff Reduction in the Zhang River Due to Water Diversion for Irrigation. Water (Switzerland), 2022, 14, 1918.	1.2	4
13	Spatio-Temporal Matching and Nexus of Water–Energy–Food in the Yellow River Basin over the Last Two Decades. Water (Switzerland), 2022, 14, 1859.	1.2	2
14	Inverse Trend in Runoff in the Source Regions of the Yangtze and Yellow Rivers under Changing Environments. Water (Switzerland), 2022, 14, 1969.	1.2	1
15	Analysis of Future Meteorological Drought Changes in the Yellow River Basin under Climate Change. Water (Switzerland), 2022, 14, 1896.	1.2	5
16	Projection of Future Water Resources Carrying Capacity in the Huang-Huai-Hai River Basin under the Impacts of Climate Change and Human Activities. Water (Switzerland), 2022, 14, 2006.	1.2	3
17	The Spatial and Temporal Assessment of the Water–Land Nexus in a Changing Environment: The Huang-Huai-Hai River Basin (China). Water (Switzerland), 2022, 14, 1905.	1.2	3
18	Centennial Precipitation Characteristics Change in Haihe River Basin, China. Atmosphere, 2022, 13, 1025.	1.0	3

GUOQING WANG

#	Article	IF	CITATIONS
19	Trends and Changes in Hydrologic Cycle in the Huanghuaihai River Basin from 1956 to 2018. Water (Switzerland), 2022, 14, 2148.	1.2	1
20	Changing characteristics and attribution analysis of potential evapotranspiration in the Huang–Huai–Hai River Basin, China. Meteorology and Atmospheric Physics, 2021, 133, 97-108.	0.9	13
21	Evaluation of Multi-Source Soil Moisture Datasets over Central and Eastern Agricultural Area of China Using In Situ Monitoring Network. Remote Sensing, 2021, 13, 1175.	1.8	10
22	Evaluating the Collaborative Security of Water–Energy–Food in China on the Basis of Symbiotic System Theory. Water (Switzerland), 2021, 13, 1112.	1.2	8
23	The sensitivity of vegetation cover to climate change in multiple climatic zones using machine learning algorithms. Ecological Indicators, 2021, 124, 107443.	2.6	26
24	Closure to "Quantifying the Impacts of Climate Change and Human Activities on Runoff Variation: Case Study of the Upstream of Minjiang River, China―by Shuqi Liang, Wensheng Wang, Dan Zhang, Yueqing Li, and Guoqing Wang. Journal of Hydrologic Engineering - ASCE, 2021, 26, .	0.8	0
25	Evaluation and Hydrological Application of a Data Fusing Method of Multi-Source Precipitation Products-A Case Study over Tuojiang River Basin. Remote Sensing, 2021, 13, 2630.	1.8	3
26	Variation Characteristics and Influencing Factors of Soil Moisture Content in the Lime Concretion Black Soil Region in Northern Anhui. Water (Switzerland), 2021, 13, 2251.	1.2	3
27	Changes in and Modelling of Hydrological Process for a Semi-Arid Catchment in the Context of Human Disturbance. Frontiers in Earth Science, 2021, 9, .	0.8	2
28	Long-Term Projection of Water Cycle Changes over China Using RegCM. Remote Sensing, 2021, 13, 3832.	1.8	6
29	Past variations and future projection of runoff in typical basins in 10 water zones, China. Science of the Total Environment, 2021, 798, 149277.	3.9	29
30	Uncertainty Analysis of SWAT Modeling in the Lancang River Basin Using Four Different Algorithms. Water (Switzerland), 2021, 13, 341.	1.2	24
31	Error Correction of Multi-Source Weighted-Ensemble Precipitation (MSWEP) over the Lancang-Mekong River Basin. Remote Sensing, 2021, 13, 312.	1.8	11
32	Spatial and seasonal variations of hydrological responses to climate and land-use changes in a highly urbanized basin of Southeastern China. Hydrology Research, 2021, 52, 506-522.	1.1	8
33	Are the Latest GSMaP Satellite Precipitation Products Feasible for Daily and Hourly Discharge Simulations in the Yellow River Source Region?. Remote Sensing, 2021, 13, 4199.	1.8	9
34	Impact of Climate Change on Water Availability in Water Source Areas of the South-to-North Water Diversion Project in China. Frontiers in Earth Science, 2021, 9, .	0.8	9
35	Evaluation of the Ability of CMIP6 Global Climate Models to Simulate Precipitation in the Yellow River Basin, China. Frontiers in Earth Science, 2021, 9, .	0.8	9
36	How do natural climate variability, anthropogenic climate and basin underlying surface change affect streamflows? A three-source attribution framework and application. Journal of Hydro-Environment Research, 2020, 28, 57-66.	1.0	8

GUOQING WANG

#	Article	IF	CITATIONS
37	Impacts of climate change on hydrology in the Yellow River source region, China. Journal of Water and Climate Change, 2020, 11, 916-930.	1.2	30
38	Future streamflow assessment in the Haihe River basin located in northern China using a regionalized variable infiltration capacity model based on 18 CMIP5 GCMs. Journal of Water and Climate Change, 2020, 11, 1551-1569.	1.2	8
39	Verification of a New Spatial Distribution Function of Soil Water Storage Capacity Using Conceptual and SWAT Models. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	0.8	9
40	Evaluation of Precipitation Products by Using Multiple Hydrological Models over the Upper Yellow River Basin, China. Remote Sensing, 2020, 12, 4023.	1.8	19
41	Concentration–Discharge Relationships in Runoff Components during Rainfall Events at the Hydrohill Experimental Catchment in Chuzhou, China. Water (Switzerland), 2020, 12, 3033.	1.2	1
42	Quantifying the Impacts of Climate Change and Human Activities on Runoff Variation: Case Study of the Upstream of Minjiang River, China. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	0.8	16
43	A spatiotemporal deep fusion model for merging satellite and gauge precipitation in China. Journal of Hydrology, 2020, 584, 124664.	2.3	118
44	Nine-Year Systematic Evaluation of the GPM and TRMM Precipitation Products in the Shuaishui River Basin in East-Central China. Remote Sensing, 2020, 12, 1042.	1.8	29
45	The impact of climate variability and land use/cover change on the water balance in the Middle Yellow River Basin, China. Journal of Hydrology, 2019, 577, 123942.	2.3	80
46	The Capacity of the Hydrological Modeling for Water Resource Assessment under the Changing Environment in Semi-Arid River Basins in China. Water (Switzerland), 2019, 11, 1328.	1.2	19
47	Drought Monitoring Utility using Satellite-Based Precipitation Products over the Xiang River Basin in China. Remote Sensing, 2019, 11, 1483.	1.8	21
48	Potential Impact of a Large-Scale Cascade Reservoir on the Spawning Conditions of Critical Species in the Yangtze River, China. Water (Switzerland), 2019, 11, 2027.	1.2	4
49	Attribution Analysis for Runoff Change on Multiple Scales in a Humid Subtropical Basin Dominated by Forest, East China. Forests, 2019, 10, 184.	0.9	13
50	Assessing the Uncertainties of Four Precipitation Products for Swat Modeling in Mekong River Basin. Remote Sensing, 2019, 11, 304.	1.8	47
51	Dynamic runoff simulation in a changing environment: A data stream approach. Environmental Modelling and Software, 2019, 112, 157-165.	1.9	21
52	Evaluating Suitability of Multiple Precipitation Products for the Lancang River Basin. Chinese Geographical Science, 2019, 29, 37-57.	1.2	27
53	Attribution analysis of runoff decline in a semiarid region of the Loess Plateau, China. Theoretical and Applied Climatology, 2018, 131, 845-855.	1.3	24
54	Integration of a Parsimonious Hydrological Model with Recurrent Neural Networks for Improved Streamflow Forecasting. Water (Switzerland), 2018, 10, 1655.	1.2	56

GUOQING WANG

#	Article	IF	CITATIONS
55	Parameter Uncertainty Analysis of the SWAT Model in a Mountain-Loess Transitional Watershed on the Chinese Loess Plateau. Water (Switzerland), 2018, 10, 690.	1.2	70
56	Investigating causes of changes in runoff using hydrological simulation approach. Applied Water Science, 2017, 7, 2245-2253.	2.8	9
57	Runoff sensitivity to climate change for hydro-climatically different catchments in China. Stochastic Environmental Research and Risk Assessment, 2017, 31, 1011-1021.	1.9	27
58	A revised drought index based on precipitation and pan evaporation. International Journal of Climatology, 2017, 37, 793-801.	1.5	31
59	Attribution of Runoff Change for the Xinshui River Catchment on the Loess Plateau of China in a Changing Environment. Water (Switzerland), 2016, 8, 267.	1.2	32
60	Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,250.	1.2	104
61	Hydrological projection for the Miyun Reservoir basin with the impact of climate change and human activity. Quaternary International, 2012, 282, 96-103.	0.7	25
62	Attribution for decreasing streamflow of the Haihe River basin, northern China: Climate variability or human activities?. Journal of Hydrology, 2012, 460-461, 117-129.	2.3	237
63	Sensitivity of hydrological variables to climate change in the Haihe River basin, China. Hydrological Processes, 2012, 26, 2294-2306.	1.1	44
64	Runoff reduction due to environmental changes in the Sanchuanhe river basin. International Journal of Sediment Research, 2008, 23, 174-180.	1.8	50
65	Connections between meteorological and hydrological droughts in a semi-arid basin of the middle Yellow River. Proceedings of the International Association of Hydrological Sciences, 0, 379, 403-407.	1.0	4
66	Analysis of Event-based Hydrological Processes at the Hydrohill Catchment Using Hydrochemical and Isotopic Methods. Proceedings of the International Association of Hydrological Sciences, 0, 383, 99-110.	1.0	1
67	Ensemble flood simulation for the typical catchment in humid climatic zone by using multiple hydrological models. Proceedings of the International Association of Hydrological Sciences, 0, 383, 213-222.	1.0	2