Yulia Nelyubina

List of Publications by Citations

Source: https://exaly.com/author-pdf/6760023/yulia-nelyubina-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

361 papers

4,220 citations

29 h-index

46 g-index

441 ext. papers

5,012 ext. citations

avg, IF

5.83 L-index

#	Paper	IF	Citations
361	A Trigonal Prismatic Mononuclear Cobalt(II) Complex Showing Single-Molecule Magnet Behavior. Journal of the American Chemical Society, 2015 , 137, 9792-5	16.4	228
360	A Planar-Chiral Rhodium(III) Catalyst with a Sterically Demanding Cyclopentadienyl Ligand and Its Application in the Enantioselective Synthesis of Dihydroisoquinolones. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7714-7718	16.4	128
359	"Higher density does not mean higher stability" mystery of paracetamol finally unraveled. <i>Chemical Communications</i> , 2010 , 46, 3469-71	5.8	76
358	Polymorphism in a Cobalt-Based Single-Ion Magnet Tuning Its Barrier to Magnetization Relaxation. Journal of Physical Chemistry Letters, 2016 , 7, 4111-4116	6.4	76
357	Novel class of functionalized ionic liquids with grafted CMPO-moieties for actinides and rare-earth elements recovery. <i>Dalton Transactions</i> , 2010 , 39, 4170-8	4.3	74
356	Unexpected "amphoteric" character of the halogen bond: the charge density study of the co-crystal of N-methylpyrazine iodide with I2. <i>Chemical Communications</i> , 2010 , 46, 5325-7	5.8	70
355	Cyclopalladated Complexes of 3-Thiophosphorylbenzoic Acid Thioamides: Hybrid Pincer Ligands of a New Type. Synthesis, Catalytic Activity, and Photophysical Properties. <i>Organometallics</i> , 2008 , 27, 4062	2 <i>-</i> 4870	68
354	A Planar-Chiral Rhodium(III) Catalyst with a Sterically Demanding Cyclopentadienyl Ligand and Its Application in the Enantioselective Synthesis of Dihydroisoquinolones. <i>Angewandte Chemie</i> , 2018 , 130, 7840-7844	3.6	64
353	Six-membered cyclic nitronates as 1,3-dipoles in formal [3 + 3]-cycloaddition with donor-acceptor cyclopropanes. Synthesis of new type of bicyclic nitrosoacetals. <i>Organic Letters</i> , 2013 , 15, 350-3	6.2	63
352	Anion Inion interactions: their nature, energy and role in crystal formation. <i>Russian Chemical Reviews</i> , 2010 , 79, 167-187	6.8	55
351	Cyclopalladation of meta-(Diphenylthiophosphoryloxy)benzaldimines: NCS and Unexpected NCO 5,6-Membered Pincer Palladium Complexes. <i>Organometallics</i> , 2010 , 29, 2054-2062	3.8	53
350	Hybrid Thiophosphoryl B enzothiazole Palladium SCN-Pincer Complexes: Synthesis and Effect of Structure Modifications on Catalytic Performance in the Suzuki Cross-Coupling. <i>Organometallics</i> , 2011 , 30, 2920-2932	3.8	52
349	A New Volume-Based Approach for Predicting Thermophysical Behavior of Ionic Liquids and Ionic Liquid Crystals. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10076-9	16.4	50
348	Tertiary Amine-Derived Ionic Liquid-Supported Squaramide as a Recyclable Organocatalyst for Noncovalent ©n Water Catalysis. ACS Catalysis, 2017, 7, 2981-2989	13.1	48
347	Water clusters in crystal: Beyond the "hydrogen-bonding graphs". ChemPhysChem, 2006, 7, 2453-5	3.2	43
346	Synthesis of Ruthenium Half-Sandwich Complexes by Naphthalene Replacement in [CpRu(C10H8)]+. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 481-493	2.3	42
345	Are halidehalide contacts a feature of rock-salts only?. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 109	1-5 8	40

344	Simple synthesis of ruthenium pi complexes of aromatic amino acids and small peptides. <i>Chemistry - A European Journal</i> , 2010 , 16, 8466-70	4.8	37	
343	NO3@NO3@and NO3@Interactions in the crystal of urea nitrate. <i>CrystEngComm</i> , 2007 , 9, 991	3.3	37	
342	Trigonal Prismatic Tris-pyridineoximate Transition Metal Complexes: A Cobalt(II) Compound with High Magnetic Anisotropy. <i>Inorganic Chemistry</i> , 2017 , 56, 6943-6951	5.1	35	
341	Di- and Triphenylacetates of Lanthanum and Neodymium. Synthesis, Structural Diversity, and Application in Diene Polymerization. <i>Organometallics</i> , 2013 , 32, 1272-1286	3.8	35	
340	Radical Nitration-Debromination of \oplus -Bromo- \oplus -fluoroalkenes as a Stereoselective Route to Aromatic \oplus -Fluoronitroalkenes-Functionalized Fluorinated Building Blocks for Organic Synthesis. <i>Journal of Organic Chemistry</i> , 2017 , 82, 5274-5284	4.2	34	
339	Probing Spin Crossover in a Solution by Paramagnetic NMR Spectroscopy. <i>Inorganic Chemistry</i> , 2017 , 56, 14759-14762	5.1	33	
338	Chiral ion pairs in catalysis: lithium salts of chiral metallocomplex anions as catalysts for asymmetric CLI bond formation. <i>Tetrahedron: Asymmetry</i> , 2009 , 20, 1746-1752		33	
337	5,6-Membered palladium pincer complexes of 1-thiophosphoryloxy-3-thiophosphorylbenzenes. Synthesis, X-ray structure, and catalytic activity. <i>Dalton Transactions</i> , 2009 , 8657-66	4.3	33	
336	Rhodium(III) Complex with a Bulky Cyclopentadienyl Ligand as a Catalyst for Regioselective Synthesis of Dihydroisoquinolones through C-H Activation of Arylhydroxamic Acids. <i>Chemistry - A European Journal</i> , 2018 , 24, 16570-16575	4.8	33	
335	The role of a Lewis acid in the Nenitzescu indole synthesis. <i>Tetrahedron Letters</i> , 2008 , 49, 7106-7109	2	30	
334	Formal [3+3]-cycloaddition of 3-methyl-5,6-dihydro-4H-1,2-oxazine-N-oxides with cyclopropane dicarboxylates under hyperbaric conditions. <i>Tetrahedron Letters</i> , 2015 , 56, 2102-2105	2	29	
333	Pseudosymmetry in trinitropyrazole: the cost of error in space-group determination. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2892-4	16.4	29	
332	Synthesis of new chiral mono-, di-, tri-, and tetraalkylglycolurils. Russian Chemical Bulletin, 2005, 54, 691-	70/4	29	
331	Pseudosymmetry as viewed using charge density analysis. <i>CrystEngComm</i> , 2010 , 12, 77-81	3.3	28	
330	Hydrogen bonds between zwitterions: intermediate between classical and charge-assisted ones. A case study. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 3615-20	2.8	28	
329	Detailed electronic structure of a high-spin cobalt(ii) complex determined from NMR and THz-EPR spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 8201-8204	3.6	27	
328	Recent advances in biological applications of cage metal complexes. <i>RSC Advances</i> , 2015 , 5, 72621-7263	3 .7	27	
327	Copper-mediated oxidative [3 + 2]-annulation of nitroalkenes and pyridinium ylides: general access to functionalized indolizines and efficient synthesis of 1-fluoroindolizines. <i>Organic and Biomolecular Chemistry</i> 2019 17 1442-1454	3.9	26	

326	Stereoselective Alkane Oxidation with meta-Chloroperoxybenzoic Acid (MCPBA) Catalyzed by Organometallic Cobalt Complexes. <i>Molecules</i> , 2016 , 21,	4.8	25
325	Experimental charge density evidence for pnicogen bonding in a crystal of ammonium chloride. <i>ChemPhysChem</i> , 2015 , 16, 676-81	3.2	24
324	Lanthanide pyrazolecarboxylates for OLEDs and bioimaging. <i>Journal of Luminescence</i> , 2018 , 202, 38-46	3.8	24
323	Metathesis of Azomethine Imines in Reaction of 6-aryl-1,5-Diazabicyclo[3.1.0]Hexanes with (Het)Arylidenemalononitriles. <i>Mendeleev Communications</i> , 2013 , 23, 34-36	1.9	24
322	Cyclobutadiene Arene Complexes of Rhodium and Iridium. <i>Organometallics</i> , 2016 , 35, 3025-3031	3.8	23
321	Probing Ionic Crystals by the Invariom Approach: An Electron Density Study of Guanidinium Chloride and Carbonate. <i>Chemistry - A European Journal</i> , 2015 , 21, 9733-41	4.8	23
320	From "loose" to "dense" crystalline phases of calcium carbonate through "repulsive" interactions: an experimental charge-density study. <i>Chemistry - A European Journal</i> , 2012 , 18, 12633-6	4.8	23
319	Synthesis of PDE IVb Inhibitors. 3. Synthesis of (+)-, (-)-, and (\(\mathrev{\mathrew{\mtx}\}\m{\mtx}\}\\ \mtx\}\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	4.2	23
318	Synthesis of PDE IVb inhibitors. 1. Asymmetric synthesis and stereochemical assignment of (+)- and (-)-7-[3-(cyclopentyloxy)-4-methoxyphenyl]hexahydro-3H-pyrrolizin-3-one. <i>Journal of Organic Chemistry</i> , 2011 , 76, 7893-900	4.2	23
317	Rearrangement of 3-alkylidene-2-siloxy-tetrahydro-1,2-oxazines (ASENA). A new approach toward the synthesis of 3-\(\frac{1}{4}\)-hydroxyalkyl-5,6-dihydro-4H-1,2-oxazines. <i>Tetrahedron</i> , 2009 , 65, 4578-4592	2.4	23
316	EBorole triple-decker complexes as catalysts for oxidative coupling of benzoic acid with alkynes. Structure of a hybrid rhodacyclopentadienyl/borole triple-decker complex. <i>Journal of Molecular Catalysis A</i> , 2017 , 426, 393-397		22
315	Synthesis and Regioselective N-2 Functionalization of 4-Fluoro-5-aryl-1,2,3-NH-triazoles. <i>European Journal of Organic Chemistry</i> , 2017 , 2017, 6851-6860	3.2	22
314	Highly Cytotoxic Palladium(II) Pincer Complexes Based on Picolinylamides Functionalized with Amino Acids Bearing Ancillary S-Donor Groups. <i>Inorganic Chemistry</i> , 2017 , 56, 9834-9850	5.1	22
313	Polymerization of 5-Alkylidene-2-norbornenes with Highly Active PdN-Heterocyclic Carbene Complex Catalysts: Catalyst StructureActivity Relationships. <i>ACS Catalysis</i> , 2020 , 10, 1663-1678	13.1	22
312	Indenyl rhodium complexes. Synthesis and catalytic activity in reductive amination using carbon monoxide as a reducing agent. <i>Journal of Organometallic Chemistry</i> , 2018 , 867, 106-112	2.3	22
311	Metal-assisted addition of a nitrate anion to bis(oxy)enamines. A general approach to the synthesis of ⊞-nitroxy-oxime derivatives from nitronates. <i>Organic and Biomolecular Chemistry</i> , 2016 , 14, 3963-74	3.9	21
310	The synthesis of sterically hindered amines by a direct reductive amination of ketones. <i>Chemical Communications</i> , 2016 , 52, 1397-400	5.8	20
309	Ionic-liquids-assisted reaction of 6-aryl-1,5-diazabicyclo[3.1.0]hexanes with Ehitrostyrenes. Mendeleev Communications, 2009 , 19, 276-278	1.9	20

(2016-2008)

308	Complexation of N-alkyl(aryl)- and N,N-dialkylcarbamoylmethylphosphine oxides with the f-elements. <i>Russian Chemical Bulletin</i> , 2008 , 57, 1890-1896	1.7	20	
307	Indenyl Rhodium Complexes with Arene Ligands: Synthesis and Application for Reductive Amination. <i>Organometallics</i> , 2018 , 37, 2553-2562	3.8	19	
306	1,2,5-Thiadiazole 2-oxides: selective synthesis, structural characterization, and electrochemical properties. <i>Tetrahedron</i> , 2014 , 70, 5558-5568	2.4	19	
305	General Route to Cyclobutadiene Rhodium Complexes. <i>Chemistry - A European Journal</i> , 2015 , 21, 16344-	-8 8	19	
304	The first example of mechanochemical synthesis of organometallic pincer complexes. <i>Inorganic Chemistry Communication</i> , 2017 , 76, 33-35	3.1	18	
303	Bioluminescence chemistry of fireworm. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 18911-18916	11.5	18	
302	A Trigonal Prismatic Cobalt(II) Complex as a Single Molecule Magnet with a Reduced Contribution from Quantum Tunneling. <i>ChemPhysChem</i> , 2019 , 20, 1001-1005	3.2	18	
301	Acylation of Nitronates: [3,3]-Sigmatropic Rearrangement of in Situ Generated N-Acyloxy, N-oxyenamines. <i>Journal of Organic Chemistry</i> , 2018 , 83, 11057-11066	4.2	18	
300	Synthesis and biological evaluation of new substituted thioglycolurils, their analogues and derivatives. <i>European Journal of Medicinal Chemistry</i> , 2017 , 140, 141-154	6.8	18	
299	Iridium Halide Complexes [1,1-X2-8-SMe2-1,2,8-IrC2B9H10]2 (X = Cl, Br, I): Synthesis, Reactivity and Catalytic Activity. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 4635-4644	2.3	18	
298	Hybrid NCS palladium pincer complexes of thiophosphorylated benzaldimines and their ketimine analogs. <i>Journal of Organometallic Chemistry</i> , 2012 , 711, 52-61	2.3	18	
297	Cation-land lone pair-linteractions combined in one: the first experimental evidence of (H3O-lp)+ system binding in a crystal. <i>ChemPhysChem</i> , 2011 , 12, 2895-8	3.2	18	
296	Charge transfer and hydrogen bond energy in glycinium salts. Russian Chemical Bulletin, 2009, 58, 31-40	1.7	18	
295	Probing weak intermolecular interactions by using the invariom approach: a comparative study of s-tetrazine. <i>Chemistry - A European Journal</i> , 2014 , 20, 6978-84	4.8	17	
294	Structural and Spectral Properties of Photochromic Diarylethenes: Size Effect of the Ethene Bridge. Journal of Organic Chemistry, 2017 , 82, 1477-1486	4.2	16	
293	Towards the Molecular Design of Spin-Crossover Complexes of 2,6-Bis(pyrazol-3-yl)pyridines. <i>Chemistry - A European Journal</i> , 2020 , 26, 5629-5638	4.8	16	
292	[1,2,5]Selenadiazolo[3,4-b]pyrazines: Synthesis from 3,4-Diamino-1,2,5-selenaldiazole and Generation of Persistent Radical Anions. <i>European Journal of Organic Chemistry</i> , 2015 , 2015, 5585-5593	3.2	16	
291	Six-Membered Cyclic Nitroso Acetals: Synthesis and Studies of the Nitrogen Inversion Process of N-Silyloxy-3,6-dihydro-2H-1,2-oxazines. <i>European Journal of Organic Chemistry</i> , 2016 , 2016, 5569-5578	3.2	16	

290	Copper-mediated oxidative [3 + 2]-annulation of nitroalkenes and pyridinium imines: efficient synthesis of 3-fluoro- and 3-nitro-pyrazolo[1,5-a]pyridines. <i>Organic and Biomolecular Chemistry</i> , 2020 , 18, 1436-1448	3.9	15
289	Rhodium(iii)-catalyzed CF-carbenoid C-H functionalization of 6-arylpurines. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 2966-2974	3.9	15
288	Iodide [(區-indenyl)IrI2]n: an effective precursor to (indenyl)iridium sandwich complexes. <i>Mendeleev Communications</i> , 2016 , 26, 491-493	1.9	15
287	Tandem Pd-catalyzed CL coupling/recyclization of 2-(2-bromoaryl)cyclopropane-1,1-dicarboxylates with primary nitro alkanes. <i>Tetrahedron Letters</i> , 2016 , 57, 11-14	2	15
286	Fluoronitroalkenes in tandem $[4 + 1]/[3 + 2]$ -cycloaddition: one-pot three-component assembly of fluorinated bicyclic nitroso acetals. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 2588-2594	5.2	15
285	Cyclooctadiene iridium complexes $[Cp*Ir(COD)X]+ (X = Cl, Br, I)$: Synthesis and application for oxidative coupling of benzoic acid with alkynes. <i>Journal of Organometallic Chemistry</i> , 2018 , 874, 7-12	2.3	15
284	Quantum chemical methods in charge density studies from X-ray diffraction data. <i>Russian Chemical Reviews</i> , 2019 , 88, 677-716	6.8	15
283	The dark side of hydrogen bonds in the design of optical materials: a charge-density perspective. <i>Chemistry - A European Journal</i> , 2014 , 20, 2860-5	4.8	15
282	Uranium complexes of cyclic O,O-bidentate ligands with the PNP backbone. <i>Inorganica Chimica Acta</i> , 2011 , 373, 130-136	2.7	15
281	ClO3 Interactions in crystalline sodium chlorate. <i>Mendeleev Communications</i> , 2008 , 18, 29-31	1.9	15
280	Demethylation of the SMe 2 substituent in cationic metallacarboranes. Halide anion influence. Journal of Organometallic Chemistry, 2015 , 798, 257-262	2.3	14
279	Unusual intramolecular cyclization of tris(beta-oximinoalkyl)amines. the first synthesis of 1,4,6,10-tetraazaadamantanes. <i>Organic Letters</i> , 2009 , 11, 4072-5	6.2	14
278	Cyclization of 1,3-dialkyl-4,5-bis(1-thiosemicarbazido)-imidazolidin-2-ones(thiones) with aromatic aldehydes. <i>Mendeleev Communications</i> , 2010 , 20, 285-287	1.9	14
277	Condensation of 5,7-dimethyl-4a,7a-diphenyl-3-thioxoperhydroimidazo[4,5-e]-1,2,4-triazin-6-one with halogenoacetic acids. <i>Mendeleev Communications</i> , 2010 , 20, 47-49	1.9	14
276	Anion-anion assembly in crystal of sodium nitroprusside. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 879	90268	14
275	Tri- and tetranuclear heteropivalate complexes with core {Fe2Ni O} (x = 1, 2): Synthesis, structure, magnetic and thermal properties. <i>Polyhedron</i> , 2019 , 159, 426-435	2.7	14
274	Design of Manganese Phenol Pi-complexes as Shvo-type Catalysts for Transfer Hydrogenation of Ketones. <i>ChemCatChem</i> , 2019 , 11, 1602-1605	5.2	13
273	Invariom approach as a new tool in electron density studies of ionic liquids: a model case of 1-butyl-2,3-dimethylimidazolium chloride BDMIM[Cl]. <i>RSC Advances</i> , 2015 , 5, 75360-75373	3.7	13

(2013-2015)

272	Solid-phase cyclopalladation in S,C,S'-pincer systems: rising alternative for synthesis in solution. <i>Dalton Transactions</i> , 2015 , 44, 3216-26	4.3	13	
271	Very Large Magnetic Anisotropy of Cage Cobalt(II) Complexes with a Rigid Cholesteryl Substituent from Paramagnetic NMR Spectroscopy. <i>ACS Omega</i> , 2018 , 3, 4941-4946	3.9	13	
270	A comparative study of a mixed-ligand copper(II) complex by the theory of atoms in molecules and the Voronoi tessellation. <i>Mendeleev Communications</i> , 2014 , 24, 216-218	1.9	13	
269	Probing systematic errors in experimental charge density by multipole and invariom modeling: a twinned crystal of 1,10-phenanthroline hydrate. <i>Mendeleev Communications</i> , 2014 , 24, 286-289	1.9	13	
268	The First Synthesis of Furoxan and 1,3,4-Oxadiazole Ring Ensembles. <i>Journal of Heterocyclic Chemistry</i> , 2013 , 50, 135-140	1.9	13	
267	Prolinamide-Derived Ionic-Liquid-Supported Organocatalyst for Asymmetric Mono- and Bis-Aldol Reactions in the Presence of Water. <i>European Journal of Organic Chemistry</i> , 2015 , 2015, 5649-5654	3.2	13	
266	Monoanionic salicylaldimine ligands with (thio)phosphoryl pendant arms: Synthesis and complexing features. <i>Inorganica Chimica Acta</i> , 2013 , 404, 167-174	2.7	13	
265	Cd(II) and Cd(II) E u(III) Complexes with Pentafluorobenzoic Acid Anions and N-Donor Ligands: Synthesis and Structures. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2020 , 46, 557-572	1.6	13	
264	Substituted N-aminothioglycolurils containing thiosemicarbazone moiety and their cytotoxic activity in vitro. <i>Molecular Diversity</i> , 2016 , 20, 837-846	3.1	13	
263	New access to thioglycolurils by condensation of 4,5-dihydroxyimidazolidin-2-ones(thiones) with HSCN. <i>Tetrahedron Letters</i> , 2015 , 56, 6085-6088	2	12	
262	Design of pincer complexes based on (methylsulfanyl)acetic/propionic acid amides with ancillary S-and N-donors as potential catalysts and cytotoxic agents. <i>Applied Organometallic Chemistry</i> , 2018 , 32, e4360	3.1	12	
261	Insertion of carbenoids into X-H bonds catalyzed by the cyclobutadiene rhodium complexes. <i>Journal of Organometallic Chemistry</i> , 2018 , 867, 86-91	2.3	12	
2 60	Fluorene Complexes of Group 9 Metals: Fluorene Effect and Application for Reductive Amination. <i>Organometallics</i> , 2019 , 38, 3151-3158	3.8	12	
259	Synthesis, X-ray structure and electrochemical properties of hybrid binuclear metallophthalocyaninate-capped tris-pyridineoximates. <i>New Journal of Chemistry</i> , 2017 , 41, 3251-3259	3.6	11	
258	Non-classical N-metallated Pd(II) pincer complexes featuring amino acid pendant arms: Synthesis and biological activity. <i>Polyhedron</i> , 2018 , 143, 70-82	2.7	11	
257	Synthesis of amino acid esters of the ruthenium naphthalene complex [(C5Me4CH2OH)Ru(C10H8)]+. <i>Inorganica Chimica Acta</i> , 2014 , 409, 390-393	2.7	11	
256	Extremely long Cu ^{mo} contact as a possible pathway for magnetic interactions in Na2Cu(CO3)2. <i>Inorganic Chemistry</i> , 2013 , 52, 14355-63	5.1	11	
255	Generation and metathesis of azomethine imines in reaction of 6-aryl-1,5-diazabicyclo[3.1.0]hexanes with het(aryl)methylidenemalononitriles. <i>Russian Chemical Bulletin</i> , 2013 , 62, 1066-1075	1.7	11	

254	⊞-Thioureidoalkylation of urea heteroanalogs. <i>Russian Chemical Bulletin</i> , 2009 , 58, 1945-1954	1.7	11
253	4-Thio derivatives of sydnone imines. <i>Mendeleev Communications</i> , 2009 , 19, 322-323	1.9	11
252	⊞-Amino azoles in the synthesis of heterocycles: VI. Synthesis and structure of cycloalkane-annulated pyrazolo[1,5-a]pyrimidines. <i>Russian Journal of Organic Chemistry</i> , 2009 , 45, 1390-	14701	11
251	Rhodium Catalysts with a Chiral Cyclopentadienyl Ligand Derived from Natural R-Myrtenal. European Journal of Organic Chemistry, 2020 , 2020, 6019-6025	3.2	11
250	Extending the Application Scope of Organophosphorus(V) Compounds in Palladium(II) Pincer Chemistry. <i>Organometallics</i> , 2019 , 38, 1062-1080	3.8	11
249	Intramolecular Spin State Locking in Iron(II) 2,6-Di(pyrazol-3-yl)pyridine Complexes by Phenyl Groups: An Experimental Study. <i>Magnetochemistry</i> , 2018 , 4, 46	3.1	11
248	Transferable Aspherical Atom Modeling of Electron Density in Highly Symmetric Crystals: A Case Study of Alkali-Metal Nitrates. <i>Inorganic Chemistry</i> , 2017 , 56, 4689-4697	5.1	10
247	Unexpected photochemical transformation of imidazole derivatives containing the 5-hydroxy-2-methyl-4H-pyran-4-one moiety. Environmentally friendly method for the synthesis of substituted imidazo[1,5-a]pyridine-5,8-diones. <i>Tetrahedron Letters</i> , 2019 , 60, 151080	2	10
246	New Spin-Crossover Complexes of Substituted 2,6-Bis(pyrazol-3-yl)pyridines. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 2819-2829	2.3	10
245	Bioisostere Modifications of Cu2+ and Zn2+ with Pyromucic Acid Anions and N-Donors: Synthesis, Structures, Thermal Properties, and Biological Activity. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2020 , 46, 411-419	1.6	10
244	Synthesis and characterization of an Fe(i) cage complex with high stability towards strong H-acids. <i>Chemical Communications</i> , 2018 , 54, 3436-3439	5.8	10
243	5,6- and 6,6-Membered Palladium(II) Pincer Complexes Based on Functionalized Carboxamides with Ancillary Sulfur and Nitrogen Donors. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 5271-5280	2.3	10
242	Exploiting Coupling of Boronic Acids with Triols for a pH-Dependent "Click-Declick" Chemistry. Journal of Organic Chemistry, 2018 , 83, 9756-9773	4.2	10
241	Synthesis of Isoxazolines from Nitroalkanes via a [4+1]-Annulation Strategy. <i>Advanced Synthesis and Catalysis</i> , 2019 , 361, 5322-5327	5.6	10
240	Urotropine isomer (1,4,6,10-tetraazaadamantane): synthesis, structure, and chemistry. <i>Journal of Organic Chemistry</i> , 2014 , 79, 6079-86	4.2	10
239	Synthesis of New Substituted Thioglycolurils via a Tandem Hydrazone Formation- Ring Contraction Reaction. <i>Journal of Heterocyclic Chemistry</i> , 2015 , 52, 1390-1394	1.9	10
238	Synthesis of the half-sandwich ruthenium complexes [Cp*RuL3]+ via naphthalene replacement in [Cp*Ru(C10H8)]+. <i>Mendeleev Communications</i> , 2015 , 25, 29-31	1.9	10
237	Diastereoselective synthesis of 4,5-dihydroxyimidazolidin-2-ones (-thiones) and their structure. <i>Russian Chemical Bulletin</i> , 2012 , 61, 64-73	1.7	10

236	Probing stereoelectronic interactions in an O-N-O unit by the atomic energies: experimental and theoretical electron density study. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 3084-92	2.8	10
235	Why oxonium cation in the crystal phase is a bad acceptor of hydrogen bonds: a charge density analysis of potassium oxonium bis(hydrogensulfate). <i>Journal of Physical Chemistry A</i> , 2009 , 113, 5151-6	2.8	10
234	New Rearrangement of Conjugated Cyclic Ene Nitroso O-Trimethylsilyl Acetals: Convenient Synthesis of Dihydro-2H-pyran-3-one and Dihydrofuran-3-one Oximes. <i>Synthesis</i> , 2011 , 2011, 2415-2422	2.9	10
233	Peculiarities of metallgand bonding in europium trinitrate complexes: a viewpoint of comparative charge density analysis in crystals. <i>Russian Chemical Bulletin</i> , 2016 , 65, 1178-1188	1.7	10
232	Determination of Large Zero-Field Splitting in High-Spin Co(I) Clathrochelates. <i>Inorganic Chemistry</i> , 2018 , 57, 15330-15340	5.1	10
231	Synthesis of the cyclopentadienone rhodium complexes and investigation of their catalytic activity in the reductive amination of laldehydes in the presence of carbon monoxide. <i>Journal of Organometallic Chemistry</i> , 2017 , 835, 6-11	2.3	9
230	High-energy 4(10)-2-fluoro-2,2-dinitroethyl and 4(10)-2,2-dinitropropyl derivatives of polynitrohexaazaisowurtzitanes. <i>Russian Chemical Bulletin</i> , 2019 , 68, 110-115	1.7	9
229	NMR Search for Spin-Crossover in Heteroleptic Cobalt(II) Complexes. <i>Inorganic Chemistry</i> , 2020 , 59, 770	0 ₅ 7;70	9 9
228	Asymmetric synthesis of 3-prenyl-substituted pyrrolidin-2-ones. <i>Mendeleev Communications</i> , 2016 , 26, 471-473	1.9	9
227	Regioselective Synthesis of 1,5-Diaryl-2-(Hydroxyalkyl)-8-Methylglycolurils. <i>Chemistry of Heterocyclic Compounds</i> , 2014 , 50, 503-513	1.4	9
226	EDiphenylphosphorylated alkanones and related compounds: synthesis and structure. <i>Russian Chemical Bulletin</i> , 2013 , 62, 780-791	1.7	9
225	Synthesis of B,O,N-Doped Adamantanes and Diamantanes by Condensation of Oximes with Boronic Acids. <i>Journal of Organic Chemistry</i> , 2015 , 80, 6728-36	4.2	9
224	Catalytic activity of new PdII-complexes of bidentate PIIINPIII-ligands in SuzukiMiyaura reaction. <i>Russian Chemical Bulletin</i> , 2015 , 64, 909-913	1.7	9
223	Synthesis of imidazo[4,5-e][1,3]thiazolo-[3,2-b][1,2,4]triazines. <i>Chemistry of Heterocyclic Compounds</i> , 2012 , 48, 1382-1389	1.4	9
222	Syntheses of imidazo[4,5-e]-1,2,4-triazines via the reaction of 1,3-dimethyl-4,5-dihydroxy-4,5-diphenylimidazolidin-2-one with aminoguanidine and semicarbazide. <i>Mendeleev Communications</i> , 2009 , 19, 279-280	1.9	9
221	Ring formation and ring opening reactions of a dihydrothiadiazine cycle fused to 1,2,4-triazole. <i>Mendeleev Communications</i> , 2008 , 18, 253-254	1.9	9
220	Copper complexes with 1,10-phenanthrolines as efficient catalysts for oxidation of alkanes by hydrogen peroxide. <i>Inorganica Chimica Acta</i> , 2020 , 512, 119889	2.7	9
219	Economical Synthesis of ⊞-Amino Acids from a Novel Family of Easily Available Schiff Bases of Glycine Esters and 2-Hydroxy⊡benzophenone. <i>Synthesis</i> , 2018 , 50, 607-616	2.9	9

218	Synthesis of cyclohexadienyl ruthenium complexes by replacement of the naphthalene ligand in [(臣-C6H3Me4)Ru(臣-C10H8)]+. <i>Journal of Organometallic Chemistry</i> , 2015 , 785, 106-111	2.3	8
217	The C-substituted charge-compensated dicarbollide [7-SMe2-7,8-C2B9H10][ISynthesis and room-temperature rearrangement of the iridium complex. <i>Inorganic Chemistry Communication</i> , 2015 , 51, 80-82	3.1	8
216	Acid-Mediated Three Component Assembly of 4-Fluoropyrazoles from \oplus -Fluoronitroalkenes, Hydrazines, and Aldehydes. <i>European Journal of Organic Chemistry</i> , 2020 , 2020, 5211-5219	3.2	8
215	Synthesis and electropolymerization of bis(4-cyano-1-pyridino)alkanes: effect of co- and counter-ions. <i>Electrochimica Acta</i> , 2016 , 219, 673-681	6.7	8
214	Synthesis, structure and dioxygen reactivity of Ni(II) complexes with mono-, bis-, tetra- and hexa-oxime ligands. <i>Polyhedron</i> , 2014 , 71, 24-33	2.7	8
213	Regioselective synthesis of 2,8-disubstituted 1,5-diphenylglycolurils. <i>Mendeleev Communications</i> , 2014 , 24, 173-175	1.9	8
212	(Thio)phosphoryl-functionalized enaminoketones: Synthesis, structure, and complexing properties towards transition metal ions. <i>Journal of Organometallic Chemistry</i> , 2014 , 752, 183-190	2.3	8
211	Synthesis and Complexing Properties of Phosphorus-Substituted Pyridine-2-Carboxylic Acid Anilides. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2014 , 189, 1028-1042	1	8
21 0	Synthesis of New Imidazo[4,5-e][1,3]thiazolo-[3,2-b][1,2,4]triazine Derivatives. <i>Chemistry of Heterocyclic Compounds</i> , 2013 , 49, 1097-1101	1.4	8
209	Novel Method for the Synthesis of Substituted Imidazothiazolones. <i>Synlett</i> , 2015 , 26, 2521-2526	2.2	8
208	Extremely short halogen bond: the nature and energy of iodinebxygen interactions in crystalline iodic acid. <i>Mendeleev Communications</i> , 2011 , 21, 250-252	1.9	8
207	Synthesis of 1,2-diamine ligands based on natural monoterpenoids. <i>Russian Journal of Organic Chemistry</i> , 2011 , 47, 1130-1138	0.7	8
206	H-Thioureidoalkylation of functionally substituted ureas: I. Tandem cyclization and esterification in reactions of N-(carboxyalkyl)ureas with 1,3-dialkyl-4,5-dihydroxy-4,5-diphenylimidazolidine-2-thiones in alcohols. <i>Russian Journal of Organic</i>	0.7	8
205	Chemistry, 2011 , 47, 1564-1571 Co-crystals in the series of 4,5-dihydroxy- 4,5-diphenylimidazolidine-2-thiones. <i>Mendeleev</i> Communications, 2009 , 19, 211-213	1.9	8
204	Arene exchange in the anthracene ruthenium complex [(C5Me4CH2OMe)Ru(C14H10)]+. <i>Mendeleev Communications</i> , 2011 , 21, 163-164	1.9	8
203	Cyclothiomethylation of carboxylic acid hydrazides with aldehydes and H2S. <i>Russian Chemical Bulletin</i> , 2010 , 59, 425-433	1.7	8
202	Synthesis of spiro[indole-3,3?-[1,3,4]thiadiazino[3,2-a]benzimidazoles] and spiro[indole-3,6?-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines]. <i>Russian Chemical Bulletin</i> , 2010 , 59, 838-844	1.7	8
201	Estimation of the energy of coordination K-O bonds in a potassium hydrophthalate crystal on the basis of electron-density distribution analysis. <i>Crystallography Reports</i> , 2008 , 53, 192-198	0.6	8

(2012-2020)

200	Synthesis, crystal structure and photophysical properties of mixed-ligand lanthanide complexes with 1,3-diketonates bearing pyrazole moieties and 1,10-phenanthroline. <i>Inorganica Chimica Acta</i> , 2020 , 513, 119922	2.7	8
199	Synthesis and chemical transformations of six/six-membered bicyclic nitroso acetals. <i>Russian Chemical Bulletin</i> , 2016 , 65, 2243-2259	1.7	8
198	Solvothermal Synthesis of the Metal-Organic Framework MOF-5 in Autoclaves Prepared by 3D Printing. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2019 , 45, 836-842	1.6	8
197	Stereoselective Synthesis of Tetrahydroquinolines via Asymmetric Domino Reaction Catalyzed by a Recyclable Ionic-Liquid-Supported Bifunctional Tertiary Amine. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 7000-7008	3.2	8
196	Synthesis of Rhodium Complexes with Chiral Diene Ligands via Diastereoselective Coordination and Their Application in the Asymmetric Insertion of Diazo Compounds into E-H Bonds. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 18712-18720	16.4	8
195	Synthesis of N-{5-Oxo-2-thioxo(2,5-dithioxo)hexahydroimidazo-[4,5-d]imidazol-1(2H)-yl}formamides. <i>Synlett</i> , 2017 , 28, 858-862	2.2	7
194	Polyhedral Rearrangements in the Complexes of Rhodium and Iridium with Isomeric Carborane Anions [7,8-Me2-X-SMe2-7,8-nido-C2B9H8][[X = 9 and 10). <i>Organometallics</i> , 2017 , 36, 791-800	3.8	7
193	Thioether Iron Complexes [(X-SMe-7,8-C2B9H10)Fe(C6H6)] (X = 9 or 10) as Synthons of Neutral Ferracarborane Fragments. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 4627-4634	2.3	7
192	Conjugate Addition of Carbon Acids to [L]Unsaturated [-Keto Esters: Product Tautomerism and Applications for Asymmetric Synthesis of Benzo []phenazin-5-ol Derivatives. <i>Journal of Organic Chemistry</i> , 2019 , 84, 13824-13831	4.2	7
191	Synthesis of imidazo[4,5-e]thiazolo[2,3-c]-1,2,4-triazine-2,8-diones via a rearrangement of imidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazine-2,7-diones in the reaction with isatins. <i>RSC Advances</i> , 2015 , 5, 43990-44002	3.7	7
190	Solvent-Induced Encapsulation of Cobalt(II) Ion by a Boron-Capped tris-Pyrazoloximate. <i>Inorganic Chemistry</i> , 2020 , 59, 5845-5853	5.1	7
189	Coordination [Co] and [CoZn] Helicates Showing Slow Magnetic Relaxation. <i>Inorganic Chemistry</i> , 2019 , 58, 9562-9566	5.1	7
188	Cascade synthesis of the first imidazo[4,5-e]-thiazolo[2,3-c][1,2,4]triazine derivative. <i>Mendeleev Communications</i> , 2014 , 24, 119-121	1.9	7
187	A New Series of Cobalt and Iron Clathrochelates with Perfluorinated Ribbed Substituents. <i>ACS Omega</i> , 2017 , 2, 6852-6862	3.9	7
186	[4,5]-Bicyclic sydnone imines. <i>Mendeleev Communications</i> , 2014 , 24, 386-387	1.9	7
185	Novel Transformation of 1-Substituted 1h-Imidazole 3-Oxides. <i>Chemistry of Heterocyclic Compounds</i> , 2014 , 50, 1203-1206	1.4	7
184	HNO2-Assisted Triazine Cycle Contraction in 3-oxo-,3-thioxo- and 3-imino-5,7-dimethyl-4a,7a-diphenyl-perhydroimidazo[4,5-e][1,2,4]triazin-6-ones. <i>Mendeleev Communications</i> , 2012 , 22, 299-301	1.9	7
183	Synthesis of bis-spirofused thiapyrrolizidinooxindoles by 1,3-dipolar cycloaddition. <i>Russian Chemical Bulletin</i> , 2012 , 61, 1659-1662	1.7	7

182	The nature of chemical bonding in nitramide. Russian Chemical Bulletin, 2011, 60, 2161-2174	1.7	7
181	Highly regioselective synthesis of trifluoromethyl derivatives of pyrazolo[1,5-a]pyrimidines bearing fused cycloalkane rings using (2-ethoxycycloalkenyl)-2,2,2-trifluoroethanones. <i>Journal of Fluorine Chemistry</i> , 2009 , 130, 861-869	2.1	7
180	Reactions of 4-substituted 5H-1,2,3-dithiazoles with primary and secondary amines: fast and convenient synthesis of 1,2,5-thiadiazoles, 2-iminothioacetamides and 2-oxoacetamides. <i>Tetrahedron</i> , 2010 , 66, 4330-4338	2.4	7
179	Influence of weak coordination on the electronic characteristics of the copper(II) atom: charge density analysis in the crystal of azurite. <i>Mendeleev Communications</i> , 2007 , 17, 71-73	1.9	7
178	A straightforward preparation of benzo[f]naphtho[b][1,4]oxazepines from TNT. <i>Tetrahedron</i> , 2008 , 64, 11763-11767	2.4	7
177	Easy Access to Versatile Catalytic Systems for C-H Activation and Reductive Amination Based on Tetrahydrofluorenyl Rhodium(III) Complexes. <i>Chemistry - A European Journal</i> , 2021 , 27, 10903-10912	4.8	7
176	Synthesis and Spin State of the Cobalt(II) Complexes with Substituted 2,6-Bis(pyrazol-3-yl)pyridine Ligands. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2018 , 44, 489-495	1.6	7
175	Bifunctional activation of amine-boranes by the W/Pd bimetallic analogs of "frustrated Lewis pairs". <i>Chemical Science</i> , 2021 , 12, 3682-3692	9.4	7
174	(Indenyl)Iron Complex [(臣-indenyl)Fe(日C6H6)]+: Synthesis, Arene Exchange Reactions and Bonding. <i>ChemistrySelect</i> , 2017 , 2, 3549-3556	1.8	6
173	First metallacarborane ethene complex [1,8-Me2-2,2-(C2H4)2-7-SMe2-2,1,8-IrC2B9H8] and its reaction with iodine. <i>Journal of Organometallic Chemistry</i> , 2016 , 805, 54-58	2.3	6
172	(C4Me4)Co-containing triple-decker complexes with bridging heterocyclic ligands. <i>Journal of Organometallic Chemistry</i> , 2018 , 870, 130-135	2.3	6
171	Nucleophilic Halogenation of Cyclic Nitronates: A General Access to 3-Halo-1,2-Oxazines. <i>Journal of Organic Chemistry</i> , 2019 , 84, 13794-13806	4.2	6
170	(Indenyl)iridacarborane (⊞-indenyl)Ir(ℍ7,8-C2B9H11): synthesis, structure, and bonding. <i>Russian Chemical Bulletin</i> , 2017 , 66, 346-349	1.7	6
169	Functionalized mercaptoacetic and propionic acid amides: synthesis, cyclopalladation features, and catalytic activity of metal complexes. <i>Russian Chemical Bulletin</i> , 2015 , 64, 2678-2689	1.7	6
168	Reactions of the cyclopentadienyl ruthenium complexes (C5R5)Ru(cod)Cl and [(C5R5)Ru(MeCN)3]+ (R = H, Me) with phenylacetylene and acetic acid: Unexpected difference in reactivity of CpRu and Cp*Ru complexes. <i>Journal of Organometallic Chemistry</i> , 2013 , 737, 21-25	2.3	6
167	3,5-Bis(arylidene)piperid-4-ones Containing 1,3,2-Oxazaphosphorinane Moieties: Synthesis and Antitumor Activity. <i>Heteroatom Chemistry</i> , 2013 , 24, 191-199	1.2	6
166	Interactions between nitrate ions and their effect on charge redistribution in pentaerythrityltetraammonium tetranitrate crystal. <i>Russian Chemical Bulletin</i> , 2009 , 58, 751-757	1.7	6
165	4,5-Dihydroxyimidazolidin-2-ones in an ⊞-ureidoalkylation reaction of N-(carboxyalkyl)-, N-(hydroxyalkyl)-, and N-(aminoalkyl)ureas 3. ⊞-Ureidoalkylation of N-[2-(dimethylamino)ethyl]urea. <i>Russian Chemical Bulletin</i> , 2009 , 58, 2488-2493	1.7	6

164	Catalytic transformations of mono- and bis-silyl substituted norbornadienes. <i>Petroleum Chemistry</i> , 2009 , 49, 369-376	1.1	6
163	Cyclic hydroxamic acids derived from \Box -amino acids 1. Regioselective synthesis, structure, NO-donor and antimetastatic activities of spirobicyclic hydroxamic acids derived from glycine and DL-alanine. <i>Russian Chemical Bulletin</i> , 2010 , 59, 127-135	1.7	6
162	Reaction of 1,3-dimethyl-3a,9a-diphenyl-3,3a,9,9a-tetrahydroimidazo-[4,5-e]-1,3-thiazolo[3,2-b]-1,2,4-triazine-2,7 with isatins. <i>Mendeleev Communications</i> , 2010 , 20, 288-290	(1H <u>,6</u> 6H)-	di 6 ne
161	Energy aspect of the chemical bonding peculiarities in the crystal of sodium iodide dihydrate. CrystEngComm, 2007, 9, 632	3.3	6
160	Mononuclear Cu(II), Zn(II), and Co(II) Complexes with 2-Furoate Anions and 2,2'-Bpy: Synthesis, Structure, and Biological Activity. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2020 , 46, 787-794	1.6	6
159	Influence of the steric properties of pyridine ligands on the structure of complexes containing the {LnCd2(bzo)7} fragment. <i>Russian Chemical Bulletin</i> , 2020 , 69, 1544-1560	1.7	6
158	Spin State Behavior of A Spin-Crossover Iron(II) Complex with N,N?-Disubstituted 2,6-bis(pyrazol-3-yl)pyridine: A Combined Study by X-ray Diffraction and NMR Spectroscopy. <i>Crystals</i> , 2020 , 10, 793	2.3	6
157	Synthesis of novel substituted (4H-furo[2,3-h]chromen-9-yl)-acetic acids via multicomponent reaction of flavones, arylglyoxals and Meldrum acid. <i>Tetrahedron</i> , 2021 , 83, 131980	2.4	6
156	Palladium(II) Pincer Complexes of Functionalized Amides with S-Modified Cysteine and Homocysteine Residues: Cytotoxic Activity and Different Aspects of Their Biological Effect on Living Cells. <i>Inorganic Chemistry</i> , 2021 , 60, 9880-9898	5.1	6
155	Invariom approach to electron density studies of open-shell compounds: the case of an organic nitroxide radical. <i>RSC Advances</i> , 2016 , 6, 91694-91710	3.7	6
154	High magnetization reversal barriers in luminescent dysprosium octahedral and pentagonal bipyramidal single-molecule magnets based on fluorinated alkoxide ligands. <i>Dalton Transactions</i> , 2021 , 50, 8487-8496	4.3	6
153	Copper-catalyzed [3 + 2]-cycloaddition of ⊞-halonitroalkenes with azomethine ylides: facile synthesis of multisubstituted pyrrolidines and pyrroles. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 3413-3427	3.9	6
152	The truth is out there: the metal-linteractions in crystal of Cr(CO)3(pcp) as revealed by the study of vibrational smearing of electron density. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 2018 , 233, 317-336	1	6
151	Formation of Polynuclear Cadmium Pivalates in Exchange Reactions. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2018 , 44, 473-482	1.6	6
150	Towards Sustainable Amino Acid Derived Organocatalysts for Asymmetric syn-Aldol Reactions. <i>European Journal of Organic Chemistry</i> , 2017 , 2017, 2540-2544	3.2	5
149	Tandem double acylation/[3,3]-rearrangement of aliphatic nitro compounds: a route to ∃-oxygenated oxime derivatives. <i>Organic and Biomolecular Chemistry</i> , 2019 , 17, 5997-6006	3.9	5
148	Nontrivial structural organization of pivalate complexes with the fragment {Fe2Li(B-O)}. <i>Mendeleev Communications</i> , 2020 , 30, 273-275	1.9	5
147	New Heterometallic Co(III) Pivalate Complexes with 1,3-(CH2)3(NH2)2. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019 , 45, 759-766	1.6	5

146	Synthesis of cyclohexadienyl ruthenium arene complexes by replacement of acetonitrile ligands in [(臣-C6H7)Ru(MeCN)3]+. <i>Journal of Organometallic Chemistry</i> , 2014 , 754, 1-4	2.3	5
145	Synthesis of the cyclohexadienyl ruthenium arene complexes [(\textit{B-C6H3Me4})Ru(\textit{B-arene})]+ from the dimethyloctadienyl ruthenium\textscript{chloride}[(\textit{IB}:\textit{B-C10H16})RuCl2]2. Journal of Organometallic Chemistry, 2014 , 770, 1-5	2.3	5
144	Unexpected formation of a 1,2-diketone from a 1,3-diketone mediated by lanthanides. <i>Tetrahedron Letters</i> , 2013 , 54, 1704-1706	2	5
143	Unexpected formation of 6-[benzofuran-3(2H)-ylidene]-3,3a,9,9a-tetra-hydroimidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-2,7-dion derivative. <i>Mendeleev Communications</i> , 2015 , 25, 476-478	e 1.9	5
142	Synthesis and complexing properties of phosphorylated imines of 8-formyl-7-hydroxycoumarin. <i>Russian Chemical Bulletin</i> , 2014 , 63, 2309-2316	1.7	5
141	Synthesis and reactivity of the cyclohexadienyl ruthenium complex [(hhh5-C6H7)Ru(MeCN)3]+ with labile acetonitrile ligands. <i>Mendeleev Communications</i> , 2013 , 23, 133-134	1.9	5
140	Addition of bis(pentafluorophenyl)phosphinous acid to compounds with activated C=C bond as a method for the synthesis of first tertiary P,P-bis(pentafluorophenyl)phosphine oxides. <i>Doklady Chemistry</i> , 2010 , 430, 18-23	0.8	5
139	The synthesis, structure, and electron density distribution in crystals of 4,5-dihydroxyimidazolidine-2-thiones. <i>Russian Chemical Bulletin</i> , 2009 , 58, 1353-1360	1.7	5
138	Nitropyrazoles 15. Synthesis and some transformations of 1-(2,4-dinitrophenyl)-4-methyl-3,5-dinitropyrazole. <i>Russian Chemical Bulletin</i> , 2009 , 58, 2109-2117	1.7	5
137	4,5-Dihydroxyimidazolidin-2-ones in the ⊞-ureidoalkylation reaction of N-(carboxyalkyl)-, N-(hydroxyalkyl)-, and N-(aminoalkyl)ureas 1. ⊞-Ureidoalkylation of N-(carboxyalkyl)ureas. <i>Russian Chemical Bulletin</i> , 2009 , 58, 395-405	1.7	5
136	Synthesis and thermal stability of imino-1,3-dithietanes. Influence of structural factors. <i>Russian Chemical Bulletin</i> , 2009 , 58, 430-436	1.7	5
135	Synthesis of 1,2,5-thiadiazole-3(2H)-thiones and 1,2,5-thiadiazol-3(2H)-ones from 1,2,3-dithiazoles. <i>Mendeleev Communications</i> , 2009 , 19, 84-86	1.9	5
134	4,5-Dihydroxyimidazolidin-2-ones in the reaction of ⊞-ureidoalkylation of N-(carboxyalkyl)-, N-(hydroxyalkyl)-, and N-(aminoalkyl)ureas. <i>Russian Chemical Bulletin</i> , 2010 , 59, 1427-1432	1.7	5
133	Synthesis and structure of azido-and amino-substituted dibenzoxazepinones. <i>Russian Chemical Bulletin</i> , 2007 , 56, 2089-2093	1.7	5
132	Phosphorylation of N-glycosides derived from para-substituted aromatic amines. <i>Russian Chemical Bulletin</i> , 2008 , 57, 2021-2027	1.7	5
131	Osmium catalysis in the reductive amination using carbon monoxide as a reducing agent. <i>Molecular Catalysis</i> , 2020 , 498, 111260	3.3	5
130	The synthesis and extraction properties of new 2-(phosphorylalkyl)-and 2-(phosphorylalkenyl)-substituted 1,8- and 1,6-naphthyridines. <i>Chemistry of Heterocyclic Compounds</i> , 2016 , 52, 583-591	1.4	5
129	Synthesis and structure of bis(indenyl)-rhodium and -iridium complexes. <i>Journal of Organometallic Chemistry</i> , 2019 , 880, 312-316	2.3	5

128	Functionalization of bioactive substrates with a F5SCH = CH moiety. <i>Journal of Sulfur Chemistry</i> , 2020 , 41, 29-43	2.3	5
127	Pathway bifurcations in the cage rearrangement of metallacarboranes: experimental and computational evidence. <i>Dalton Transactions</i> , 2021 , 50, 287-293	4.3	5
126	New Method for the Synthesis of 1-Substituted (3a,6a)-Diaryllglycolurils. Synlett, 2017 , 28, 669-672	2.2	4
125	Spin State of the Iron(II) and Cobalt(II) 2,6-Di(5-Amino-1H-Pyrazol-3-yl)pyridine Complexes in Solution and in Crystal. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2019 , 45, 402-410	1.6	4
124	Tricarbonylrhenium(I) complexes with heterodentate ligands based on functionalized amides: Synthesis, structural features, and cytotoxic activity. <i>Journal of Organometallic Chemistry</i> , 2019 , 892, 66-74	2.3	4
123	Efficient method for the synthesis of 1,3-unsubstituted 2-imino-5-oxooctahydroimidazo[4,5-d]imidazolium iodides based on thioglycolurils. <i>Chemistry of Heterocyclic Compounds</i> , 2019 , 55, 160-166	1.4	4
122	Steric and Electronic Effect of Cp-Substituents on the Structure of the Ruthenocene Based Pincer Palladium Borohydrides. <i>Molecules</i> , 2020 , 25,	4.8	4
121	Synthesis and Structure of 1-Substituted Semithioglycolurils. <i>Synthesis</i> , 2020 , 52, 2563-2571	2.9	4
120	Synthesis of new ring-fused thiocarbamates by condensation of 2-thioxo-and 2-oxo-1,3-dialkyl-4,5-dihydroxy-4,5-diphenylimidazolidines with KSCN. <i>Mendeleev Communications</i> , 2014 , 24, 105-107	1.9	4
119	Regioselective reactions of N-(carboxyalkyl)- and N-(aminoethyl)ureas with glyoxal and 1,2-dioxo-1,2-diphenylethane. <i>Russian Chemical Bulletin</i> , 2014 , 63, 416-421	1.7	4
118	[3 + 2]-Cycloaddition of azomethine ylide at 1,3-dimethyl-6-(2-oxo-1,2-dihydro-3H-indol-3-ylidene)-3a,9a-diphenyl-3,3a,9,9a-tetrahydroimidazo[4,5-Mendeleev Communications, 2012 , 22, 90-91	e][1 ₉ 3]	thipzolo[3,2
117	Pd(II) and Pt(II) complexes of cyclic bidentate (S)PNP(S) ligands: Synthesis, structure and catalytic activity in the Suzuki reaction. <i>Inorganica Chimica Acta</i> , 2013 , 395, 203-211	2.7	4
116	Reaction of 3,3-disubstituted 1-chloromethoxy-1-triazene 2-oxides with tetramethylammonium hydroxide. <i>Mendeleev Communications</i> , 2017 , 27, 567-569	1.9	4
115	Pseudosymmetry in Trinitropyrazole: The Cost of Error in Space-Group Determination. <i>Angewandte Chemie</i> , 2011 , 123, 2944-2946	3.6	4
114	Betulin 3,28-Bis-O-trifluoroacetate: Synthesis and Molecular Structure. <i>Russian Journal of Organic Chemistry</i> , 2010 , 46, 1490-1492	0.7	4
113	Synthesis of 4-(trifluoromethyl)pyrido[4,3-d]pyrimidine derivatives. <i>Russian Chemical Bulletin</i> , 2010 , 59, 1403-1407	1.7	4
112	Reaction of 1-arylmethylidenepyrazolidin-1-azomethine imines with aryl ketenes. <i>Russian Chemical Bulletin</i> , 2010 , 59, 1433-1441	1.7	4
111	Structure and tautomerism of 2-benzimidazolylthioureas. <i>Mendeleev Communications</i> , 2007 , 17, 224-2	26 1.9	4

110	Pyridine and benzyltriethylammonium chloride ate-complexes of 2,2,2-trichlorobenzo[d]-1,3,2-dioxaphosphole in reactions with alk-1-ynes. <i>Mendeleev Communications</i> , 2007 , 17, 327-329	1.9	4
109	Thermally induced rearrangement of the arylhydrazones of furoxan-3-yl carbonyl compounds. <i>Mendeleev Communications</i> , 2006 , 16, 259-262	1.9	4
108	The charge-assisted hydrogen-bonded organic framework (CAHOF) self-assembled from the conjugated acid of tetrakis(4-aminophenyl)methane and 2,6-naphthalenedisulfonate as a new class of recyclable Brillsted acid catalysts. <i>Beilstein Journal of Organic Chemistry</i> , 2020 , 16, 1124-1134	2.5	4
107	2,4,9-Triazaadamantanes with IlickableIGroups: Synthesis, Structure and Applications as Tripodal Platforms. <i>European Journal of Organic Chemistry</i> , 2020 , 2020, 6723-6735	3.2	4
106	Tris(pyrazolyl)borate rhodium complexes. Application for reductive amination and esterification of aldehydes in the presence of carbon monoxide. <i>Journal of Organometallic Chemistry</i> , 2020 , 925, 121468	2.3	4
105	Construction of bis-, tris- and tetrahydrazones by addition of azoalkenes to amines and ammonia. <i>Beilstein Journal of Organic Chemistry</i> , 2016 , 12, 2471-2477	2.5	4
104	Novel di- and tetra(pyrazolyl)bipyridine ligands and their Co (II)-complexes for electrochemical applications. <i>Tetrahedron</i> , 2016 , 72, 7552-7556	2.4	4
103	Coordination polymers based on 3,5-di-tert-butylbenzoate {Cd2Eu} moieties. <i>Inorganica Chimica Acta</i> , 2021 , 515, 120050	2.7	4
102	Carbon monoxide-driven osmium catalyzed reductive amination harvesting WGSR power. <i>Catalysis Science and Technology</i> , 2021 , 11, 4922-4930	5.5	4
101	High-Spin Cobalt(II) Complex with Record-Breaking Anisotropy of the Magnetic Susceptibility According to Paramagnetic NMR Spectroscopy Data. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2021 , 47, 10-16	1.6	4
100	Organometallic cyanotype: formation of Prussian blue by a photochemical decomposition of the arene iron complex. <i>Mendeleev Communications</i> , 2019 , 29, 71-73	1.9	3
99	Coordination diversity of copper(II) phosphoryl-functionalized salicylaldiminates: Effect of the length of the pendant phosphoryl arm. <i>Polyhedron</i> , 2015 , 85, 295-301	2.7	3
98	Unexpected antifungal activity of half-sandwich complexes with metallodine bonds. <i>Journal of Organometallic Chemistry</i> , 2020 , 916, 121272	2.3	3
97	Different reactivity of cyclooctadiene complexes 3,3-(cod)-8-SMe2-closo-3,1,2-RhC2B9H10 and 1,8-Me2-2,2-(cod)-11-SMe2-2,1,8-closo-RhC2B9H8 toward iodine. <i>Journal of Organometallic Chemistry</i> , 2018 , 867, 224-227	2.3	3
96	Synthesis and reactivity of the cyclohexadienyl rhodium complexes. <i>Journal of Organometallic Chemistry</i> , 2018 , 862, 71-75	2.3	3
95	Ion aggregation of methylpyrazinium iodide and its derivatives in crystals and in solutions of nonpolar solvents. <i>Russian Chemical Bulletin</i> , 2012 , 61, 343-350	1.7	3
94	Formation of Ionic Pairs between Single-Charged Anions and Double-Charged Cations with Separated Charge. <i>Mendeleev Communications</i> , 2012 , 22, 138-140	1.9	3
93	Synthesis of iron complexes [(ြ5-indenyl)FeL3]+ from the readily available[(ြ5-indenyl)Fe(ြ6-indene)]+. <i>Inorganica Chimica Acta</i> , 2012 , 392, 73-76	2.7	3

92	Synthesis and crystal structure of the first five-membered ansa-metallacyclocumulene rac-(ebthi)Zr(日-t-Bu-C4-t-Bu). <i>Inorganic Chemistry Communication</i> , 2011 , 14, 975-977	3.1	3	
91	Synthesis of 1,3-dimethyl-2,4-dioxo-1H,2H,3H,4H-quinazolines and 1,5-dihydro-1,3-dimethyl-5-nitromethyl-2H- pyrano[4,3-d]pyrimidine-2,4(3H)-diones. <i>Mendeleev Communications</i> , 2009 , 19, 220-221	1.9	3	
90	Regioselective bromination of quinopimaric acid derivatives. <i>Russian Journal of Organic Chemistry</i> , 2010 , 46, 1135-1139	0.7	3	
89	General regioselective synthesis and crystal structure of racemic 5-substituted 2,2-dimethyl-3-hydroxyimidazolidin-4-ones. <i>Mendeleev Communications</i> , 2010 , 20, 106-108	1.9	3	
88	Synthesis of 2-iminothiophen-3(2H)-ones from 3H-1,2-dithiol-3-ones. <i>Mendeleev Communications</i> , 2010 , 20, 282-284	1.9	3	
87	Diastereoselective reductive amination of pyrazolidinyl alkyl ketones. <i>Chemistry of Heterocyclic Compounds</i> , 2008 , 44, 542-548	1.4	3	
86	Complexation Zn2+ and Co2+/3+ with primary diamines: Synthesis, structure and thermal properties. <i>Polyhedron</i> , 2020 , 190, 114764	2.7	3	
85	Asymmetric Synthesis of Merck's Potent hNK Antagonist and Its Stereoisomers via Tandem Acylation/[3,3]-Rearrangement of 1,2-Oxazine -Oxides. <i>Journal of Organic Chemistry</i> , 2020 , 85, 11060-7	11671	3	
84	Effect of a (hetero)aromatic spacer on the direction of cyclopalladation in ditopic pincer ligands with thione sulfur donors. <i>Journal of Organometallic Chemistry</i> , 2019 , 886, 40-47	2.3	3	
83	Sandwich complexes of iron and ruthenium with the semiconducting aromatic hydrocarbon picene. Journal of Organometallic Chemistry, 2018 , 875, 24-28	2.3	3	
82	Nickel(II) complexes with 2-Hfur and N-donors: The magnetic effects of the structural variations, thermal properties and antimycobacterial activity against Mycolicibacterium smegmatis. <i>Polyhedron</i> , 2021 , 203, 115241	2.7	3	
81	Ortho-lithiation of N-aryl ferrocenylmethanimines. <i>Inorganica Chimica Acta</i> , 2019 , 495, 118976	2.7	2	
80	Synthesis of 6,7-Dihydropyrrolo[2,1-c][1,3]thiazino[3,2-a]pyrazine-4(11bH)-(thi)ones from 1,2-Dithiolo-3-(thi)ones. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 4149-4158	3.2	2	
79	Iron(II) and Cobalt(II) Complexes with 2,6-Bis(1,4-Diphenyl-5-Hydroxy-1H-Pyrazol-3-yl)pyridine: Synthesis, Structures, and Spin States. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2020 , 46, 317-325	1.6	2	
78	Rare example of structurally characterized mononuclear N-heterocyclic carbene containing zinc carboxylate. <i>Mendeleev Communications</i> , 2020 , 30, 293-295	1.9	2	
77	Unpredictable cycloisomerization of 1,11-dien-6-ynes by a common cobalt catalyst. <i>Beilstein Journal of Organic Chemistry</i> , 2017 , 13, 639-643	2.5	2	
76	Pseudoclathrochelate n-hexadecylboron-capped metal(II) tris-pyrazoloximates: synthesis, X-ray structure, spectral and magnetic characteristics. <i>Inorganica Chimica Acta</i> , 2018 , 471, 413-418	2.7	2	
75	Usage of (C5R5)Co(CO)I2 (R = H, Me) for the synthesis of 12-vertex closo-cobaltacarboranes. Unexpected formation of 10-{CpCo(C5H4)}-7,8-Me2-7,8-nido-C2B9H9. Journal of Organometallic Chamistry 2018, 865, 109, 113	2.3	2	

74	Na3Tb3[Si6O18] ©H2O, a synthetic analogue of microporous mineral gerenite. <i>Crystallography Reports</i> , 2016 , 61, 576-580	0.6	2
73	Cyclic hydroxamic acids derived from \Box -amino acids 2. Regioselective synthesis, crystal structure, and antitumor activity of spiropiperidine-imidazolidine hydroxamic acids based on glycine and dl-alanine. <i>Russian Chemical Bulletin</i> , 2013 , 62, 1272-1281	1.7	2
72	Synthesis of chiral chromenes from levoglucosenone. Russian Chemical Bulletin, 2013, 62, 2196-2201	1.7	2
71	Conductometric and UVII isible Spectroscopic Studies on Association in Dilute Aqueous Solutions of Dq2Fe(CN)6. <i>Journal of Solution Chemistry</i> , 2015 , 44, 1240-1255	1.8	2
70	Bis(pentafluorophenyl)phosphinous acid in the synthesis of P,P-bis(pentafluorophenyl)phosphorylalkanones and -alkanediones. <i>Russian Chemical Bulletin</i> , 2014 , 63, 2317-2324	1.7	2
69	Methodical aspects of experimental studies for the relationship of static and dynamic features of crystal structure: application of various atomic scattering factors to study the vibrational characteristics of molecular crystals. <i>Russian Chemical Bulletin</i> , 2014 , 63, 2224-2234	1.7	2
68	Tetramethylcyclobutadiene)cobalt complexes of protected aromatic amino acids*. <i>Mendeleev Communications</i> , 2012 , 22, 134-135	1.9	2
67	3,3?-bi(6,8-dialkyl-2,4-dioxa-7-thia-6,8-diazabicyclo[3.3.0]-octane-7,7-dioxides): Structure and synthesis. <i>Russian Journal of Organic Chemistry</i> , 2009 , 45, 248-255	0.7	2
66	New chiral ligands: 1,4-diols prepared from (S)-1-phenylethanol. <i>Russian Journal of Organic Chemistry</i> , 2010 , 46, 1332-1338	0.7	2
65	Absolute configuration of a chiral proton sponge. <i>Mendeleev Communications</i> , 2008 , 18, 86-87	1.9	2
64	New Low-Dimensional Hybrid Perovskitoids Based on Lead Bromide with Organic Cations from Charge-Transfer Complexes. <i>Crystals</i> , 2021 , 11, 1424	2.3	2
63	Construction of Saturated Oxazolo[3,2-][1,2]oxazines via Tandem [3+2]-Cycloaddition/[1,3]-Rearrangement of Cyclic Nitronates and Ketenes. <i>Journal of Organic</i> Chemistry, 2021 , 86, 16337-16348	4.2	2
62	Synthesis of cyclopentadienyl iron complexes with substituted phenylene ligands via Suzuki coupling. <i>Journal of Organometallic Chemistry</i> , 2020 , 906, 121061	2.3	2
61	Improved In Vitro Antimycobacterial Activity of Trinuclear Complexes Cobalt(II,III) and Iron(III) with 2-Furoic Acid against Mycolicibacterium smegmatis. <i>ChemistrySelect</i> , 2020 , 5, 11837-11842	1.8	2
60	Influence of Polymorphism on the Magnetic Properties of Single-Molecule Magnets According to the Data of EPR Spectroscopy in the Terahertz Range. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2020 , 46, 756-761	1.6	2
59	Unusual multiple insertion of diazo carbonyl compounds into (purin-6-yl)benzene derivative. <i>Mendeleev Communications</i> , 2020 , 30, 494-495	1.9	2
58	A New Metal-Organic Framework: Product of Solvothermal Synthesis in 3D-Printed Autoclaves. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2021 , 47, 253-260	1.6	2
57	Highly basic alkyl-substituted bis(benzhydryl) Call and YbII complexes with ECHM agostic interactions. <i>Mendeleev Communications</i> , 2021 , 31, 334-336	1.9	2

56	Heteroleptic cadmium(ii) and terbium(iii) pentafluorobenzoate-benzoate and pentafluorobenzoate-2-furancarboxylate compounds. <i>Russian Chemical Bulletin</i> , 2021 , 70, 830-838	1.7	2
55	Synthesis of Rhodium Complexes with Chiral Diene Ligands via Diastereoselective Coordination and Their Application in the Asymmetric Insertion of Diazo Compounds into E⊞ Bonds. <i>Angewandte Chemie</i> , 2021 , 133, 18860-18868	3.6	2
54	Ordering of calcium and vacancies in calcium catapleiite CaZr[Si3O9] IPH2O. <i>Crystallography Reports</i> , 2016 , 61, 376-382	0.6	2
53	One-pot synthesis of substituted pyrrolo[3,4-]pyridine-4,5-diones based on the reaction of -(1-(4-hydroxy-6-methyl-2-oxo-2-pyran-3-yl)-2-oxo-2-arylethyl)acetamide with amines. <i>Beilstein Journal of Organic Chemistry</i> , 2019 , 15, 2840-2846	2.5	2
52	Synthesis and Reactivity of Heptamethylcyclohexadienyl Rhodium(III) Complexes. <i>Organometallics</i> , 2019 , 38, 4607-4614	3.8	2
51	Spin-Crossover in Iron(II) Complexes of N,N?-Disubstituted 2,6-Bis(Pyrazol-3-yl)Pyridines: An Effect of a Distal Substituent in the 2,6-Dibromophenyl Group. <i>Crystals</i> , 2021 , 11, 922	2.3	2
50	Synthesis of Overloaded Cyclopentadienyl Rhodium(III) Complexes via Cyclotetramerization of tert-Butylacetylene. <i>Organometallics</i> ,	3.8	2
49	Effect of ion solvation in binary solvents on the stability of ion pairs. <i>Mendeleev Communications</i> , 2017 , 27, 78-81	1.9	1
48	Synthesis and Spin State of the Iron(II) Complex with the N,N'-Disubstituted 2,6-Bis(pyrazol-3-yl)pyridine Ligand. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2020 , 46, 402-410	1.6	1
47	New Iron(III) Oxo Complex with Substituted 2,6-Bis(Pyrazol-3-yl)Pyridine. <i>Russian Journal of Inorganic Chemistry</i> , 2020 , 65, 864-869	1.5	1
46	Mononuclear (C5R5)Ir-complexes with Elinked biaryls: Stability and fluorescence quenching. Journal of Organometallic Chemistry, 2020 , 911, 121154	2.3	1
45	REktitelbild: A Planar-Chiral Rhodium(III) Catalyst with a Sterically Demanding Cyclopentadienyl Ligand and Its Application in the Enantioselective Synthesis of Dihydroisoquinolones (Angew. Chem. 26/2018). <i>Angewandte Chemie</i> , 2018 , 130, 8032-8032	3.6	1
44	Reorientation of ions in contact ion pairs as a factor increasing the intensity of outer-sphere charge transfer bands. <i>Mendeleev Communications</i> , 2014 , 24, 47-49	1.9	1
43	Ruthenium naphthalene complexes with a carboxy-substituted cyclopentadienyl ligand. <i>Mendeleev Communications</i> , 2014 , 24, 214-215	1.9	1
42	Correction to Synthesis of PDE IVb Inhibitors. 3. Synthesis of (+)-, (I)-, and (H)-7-[3-(Cyclopentyloxy)-4-methoxyphenyl]hexahydro-3H-pyrrolizin-3-one via Reductive Domino Transformations of 3-ECarbomethoxyethyl-Substituted Six-Membered Cyclic Nitronates. <i>Journal of</i>	4.2	1
41	Organic Chemistry, 2012 , 77, 7775-7775 Synthesis and structure of (1S)-{2-[(1S)-hydroxyethyl]phenyl}-1-phenyl-2,2,2-trifluoroethanol. Doklady Chemistry, 2010 , 435, 314-318	0.8	1
40	On the nature of intermediates in the reactions of carbanions of diethyl arylmalonates with isocyanates. <i>Russian Chemical Bulletin</i> , 2009 , 58, 1088-1090	1.7	1
39	Interactions between oppositely-charged vs. those between like-charged species in crystal of aminoacetonitrile picrate: a charge density investigation. <i>Zeitschrift F\(^1\) Kristallographie</i> , 2012 , 227, 151-	157	1

38	New aspects of acid-assisted nucleophilic substitution reactions of 11-vertex nido-carboranes. <i>Polyhedron</i> , 2022 , 214, 115654	2.7	1
37	New aspects of reactions of methyl (thio)ureas with benzil. <i>Mendeleev Communications</i> , 2021 , 31, 673-6	5 76 9	1
36	Chemical design of heterometallic carboxylate structures with Fe3+ and Ag+ ions as a rational synthetic approach. <i>Mendeleev Communications</i> , 2021 , 31, 628-630	1.9	1
35	Binuclear Complexes of Cu(II) and Mg(II) with 2-Furancarboxylic Acid: Synthesis, Structure, EPR Spectroscopy, and Results of In Vitro Biological Activity against Mycolicibacterium Smegmatis and SCOV3. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021 , 47, 881-890	1.6	1
34	Amine-boranes reactions promoted by lanthanide(II) ions Chemical Communications, 2021,	5.8	1
33	New Low-Dimensional Perovskites Based on Lead Bromide. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2021 , 47, 365-375	1.6	1
32	Phosphine ligands in the ruthenium-catalyzed reductive amination without an external hydrogen source. <i>Journal of Organometallic Chemistry</i> , 2021 , 941, 121806	2.3	1
31	Synthesis of 2H-azirinyl phosphonates and phosphine oxides from phosphorus containing allenes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2016 , 191, 1464-1466	1	1
30	Novel base-initiated cascade reactions of hemiindigos to produce dipolar Earbolines and indole-fused pentacycles <i>RSC Advances</i> , 2019 , 9, 41402-41408	3.7	1
29	Synthetic Approaches to New Redox-Active Carbene Ligands. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2021 , 47, 117-126	1.6	1
28	Synthesis of unsaturated silyl nitronates via the silylation of conjugated nitroalkenes. <i>Tetrahedron Letters</i> , 2018 , 59, 3128-3131	2	1
27	Half-sandwich complexes of group 9 metals with N,N?-ligands for CF3-carbenoid alkylation of N-(pyrimidin-2-yl)indole. <i>Journal of Organometallic Chemistry</i> , 2021 , 946-947, 121899	2.3	1
26	Calcium-based coordination polymers from a solvothermal synthesis of HKUST-1 in 3D printed autoclaves. <i>Mendeleev Communications</i> , 2022 , 32, 105-108	1.9	1
25	Deoxygenative Arylation of 5,6-Dihydro-4-1,2-oxazineoxides with Arynes <i>Journal of Organic Chemistry</i> , 2022 , 87, 6838-6851	4.2	1
24	Evaluation of the role of dilution in ionic crystal formation by analysis of electron density distribution for two solvatomorphs of 4-amino-3,5-dinitropyrazole ammonium salt. <i>Russian Chemical Bulletin</i> , 2013 , 62, 1707-1719	1.7	О
23	Unexpected aspect of the Fischer indolization of propiophenone (5-chloro-2-methoxyphenyl)hydrazone. <i>Mendeleev Communications</i> , 2011 , 21, 337-338	1.9	O
22	What are the prospects for using complexes of copper(ii) and zinc(ii) to suppress the vital activity of ?. RSC Advances, 2022, 12, 5173-5183	3.7	О
21	Room-Temperature Spin Crossover in a Solution of Iron(II) Complexes with ,'-Disubstituted Bis(pyrazol-3-yl)pyridines <i>ACS Omega</i> , 2021 , 6, 33111-33121	3.9	O

(2021-2022)

20	Using N-Heterocyclic Carbenes as Weak Equatorial Ligands to Design Single-Molecule Magnets: Zero-Field Slow Relaxation in Two Octahedral Dysprosium(III) Complexes <i>Inorganic Chemistry</i> , 2022 , 61, 1264-1269	5.1	О
19	Revealing the Structure of Transition Metal Complexes of Formaldoxime. <i>Inorganic Chemistry</i> , 2021 , 60, 5523-5537	5.1	O
18	First Iron(II) Clathrochelate with a Temperature-Induced Spin Crossover to an Elusive High-Spin State. <i>Crystal Growth and Design</i> , 2021 , 21, 4594-4606	3.5	O
17	Cage Polycyclic Hydrocarbons Based on Adducts of Norbornadiene-2,5 and Anthracene Derivatives. <i>Petroleum Chemistry</i> , 2019 , 59, S88-S94	1.1	O
16	Spin Transition in the Cobalt(II) Clathrochelate Films From Electron Spectroscopy Data. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2021 , 47, 52-57	1.6	O
15	Coordination Polymer of Ba2+ with 2-Furoic Acid Anions: Synthesis, Structure, and Thermal Properties. <i>Russian Journal of Inorganic Chemistry</i> , 2021 , 66, 1343-1349	1.5	O
14	Electron Density Distribution in the Crystal of the Biocompatible Metal Drganic Framework. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2022 , 48, 16-25	1.6	O
13	New Co-Crystals/Salts of Gallic Acid and Substituted Pyridines: An Effect of Ortho-Substituents on the Formation of an Acid P yridine Heterosynthon. <i>Crystals</i> , 2022 , 12, 497	2.3	O
12	Synthesis and reactivity of cyclobutadiene nickel bromide. <i>Dalton Transactions</i> , 2020 , 49, 6801-6806	4.3	
11	Synthesis and Structure of New gem-Diols with 1,2,3-Triazole Fragment. <i>Russian Journal of General Chemistry</i> , 2018 , 88, 1108-1113	0.7	
10	Nature of weak inter-and intramolecular interactions in crystals 7. Stability of homochiral supramolecular organization of dications in crystals of 1,3-dialkyl-4,5-bis(3-guanidinioamino)imidazolidin-2-one salts. <i>Russian Chemical Bulletin</i> , 2006 , 55, 399-	1.7 ·407	
9	Unravelling of a [High Spinllow Spin] <-j[Low Spinlligh Spin] Equilibrium in Spin-Crossover Iron(II) Dinuclear Helicates Using Paramagnetic NMR Spectroscopy. <i>Angewandte Chemie</i> , 2022 , 134, e2	021610	310
8	Synthesis and structure of 2,4,6-tri-cyclo-butyl-1,3,5-trioxane. <i>Acta Crystallographica Section E: Crystallographic Communications</i> , 2019 , 75, 1578-1581	0.7	
7	Estimation of the energy of coordination K-O bonds in a potassium hydrophthalate crystal on the basis of electron-density distribution analysis 2010 , 53, 192		
6	Unexpected Side Products of Chemical Transformations in Cobalt(II) Pseudoclathrochelates: An X-Ray Diffraction Study. <i>ChemistrySelect</i> , 2020 , 5, 12307-12312	1.8	
5	Two different faces of the triangular cluster Rh3Cp3(I2-CO)3 towards metalloelectrophiles: Structural and theoretical study. <i>Journal of Organometallic Chemistry</i> , 2020 , 924, 121432	2.3	
4	Spin State of Cobalt(II) 2,6-Bis(pyrazol-3-yl)pyridine Complex with a Redox-Active Ferrocenyl Substituent. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2021 , 47, 480-487	1.6	
3	Phase Transition in the Crystal of Tetramethoxysilane Studied by In Situ X-ray Diffraction Analysis. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2021 , 47, 26-31	1.6	

2 Condensations based on 5-(indol-3-yl)-pyrrolidin-2-thiones. *Heteroatom Chemistry*, **2018**, 29, e21451 1.2

Mono- and tetranuclear Fe(II,III) complexes with primary 1,3-diaminopropane: Synthetic aspects, magnetic properties and thermal behavior. *Polyhedron*, **2021**, 206, 115354

2.7