
Clarisse Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6759768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 2018, 13, 681-704.	12.0	466
2	Advances in Magnetic Nanoparticles for Biomedical Applications. Advanced Healthcare Materials, 2018, 7, 1700845.	7.6	453
3	Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 2015, 136, 46-55.	5.0	364
4	Influence of Processing Conditions on Polymorphism and Nanofiber Morphology of Electroactive Poly(vinylidene fluoride) Electrospun Membranes. Soft Materials, 2010, 8, 274-287.	1.7	241
5	Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers, 2018, 10, 161.	4.5	196
6	Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. Journal of Biomedical Materials Research - Part A, 2015, 103, 2172-2175.	4.0	148
7	Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Advances, 2013, 3, 17938.	3.6	128
8	Proving the suitability of magnetoelectric stimuli for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 2016, 140, 430-436.	5.0	126
9	Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 2011, 12, 015001.	6.1	115
10	Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Advances, 2012, 2, 11504.	3.6	106
11	Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2019, 11, 45265-45275.	8.0	101
12	Poly(vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. Polymer Testing, 2015, 44, 234-241.	4.8	99
13	Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering. Engineering in Life Sciences, 2015, 15, 351-356.	3.6	91
14	Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applications. Composites Part B: Engineering, 2018, 141, 70-75.	12.0	88
15	PHB-PEO electrospun fiber membranes containing chlorhexidine for drug delivery applications. Polymer Testing, 2014, 34, 64-71.	4.8	87
16	Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. Biomedical Materials (Bristol), 2012, 7, 035004.	3.3	83
17	Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Progress in Organic Coatings, 2015, 85, 151-158.	3.9	79
18	Electrosprayed poly(vinylidene fluoride) microparticles for tissue engineering applications. RSC Advances, 2014, 4, 33013-33021.	3.6	77

#	Article	IF	CITATIONS
19	In vivo demonstration of the suitability of piezoelectric stimuli for bone reparation. Materials Letters, 2017, 209, 118-121.	2.6	75
20	Local piezoelectric activity of single poly(L-lactic acid) (PLLA) microfibers. Applied Physics A: Materials Science and Processing, 2012, 109, 51-55.	2.3	71
21	Influence of crystallinity and fiber orientation on hydrophobicity and biological response of poly(I-lactide) electrospun mats. Soft Matter, 2012, 8, 5818.	2.7	66
22	Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). Journal of Biomedical Materials Research - Part A, 2015, 103, 919-928.	4.0	63
23	Relation between fiber orientation and mechanical properties of nano-engineered poly(vinylidene) Tj ETQq1 1	0.784314 rg	gBT/Overloc
24	Physical-chemical properties of cross-linked chitosan electrospun fiber mats. Polymer Testing, 2012, 31, 1062-1069.	4.8	52
25	Electrospun styrene–butadiene–styrene elastomer copolymers for tissue engineering applications: Effect of butadiene/styrene ratio, block structure, hydrogenation and carbon nanotube loading on physical properties and cytotoxicity. Composites Part B: Engineering, 2014, 67, 30-38.	12.0	52
26	Strategies for the development of three dimensional scaffolds from piezoelectric poly(vinylidene) Tj ETQq0 0 () rgBT /Overl	lock 10 Tf 50
27	Nanodiamonds/poly(vinylidene fluoride) composites for tissue engineering applications. Composites Part B: Engineering, 2017, 111, 37-44.	12.0	52
28	Ionic Liquid-Based Materials for Biomedical Applications. Nanomaterials, 2021, 11, 2401.	4.1	52
29	Tailoring Bacteria Response by Piezoelectric Stimulation. ACS Applied Materials & Interfaces, 2019, 11, 27297-27305.	8.0	51
30	Surface roughness dependent osteoblast and fibroblast response on poly(<scp>l</scp> -lactide) films and electrospun membranes. Journal of Biomedical Materials Research - Part A, 2015, 103, 2260-2268.	4.0	50
31	Improved response of ionic liquid-based bending actuators by tailored interaction with the polar fluorinated polymer matrix. Electrochimica Acta, 2019, 296, 598-607.	5.2	49
32	Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applications. Journal of Materials Science, 2016, 51, 4442-4450.	3.7	48
33	Electroactive biomaterial surface engineering effects on muscle cells differentiation. Materials Science and Engineering C, 2018, 92, 868-874.	7.3	47
34	Magnetoelectric response on Terfenol-D/ P(VDF-TrFE) two-phase composites. Composites Part B: Engineering, 2017, 120, 97-102.	12.0	46
35	Ionic-Liquid-Based Electroactive Polymer Composites for Muscle Tissue Engineering. ACS Applied Polymer Materials, 2019, 1, 2649-2658.	4.4	46
36	Local piezoelectric response of single poly(vinylidene fluoride) electrospun fibers. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2605-2609.	1.8	45

#	Article	IF	CITATIONS
37	Superhydrophilic poly(l-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment. Applied Surface Science, 2016, 371, 74-82.	6.1	44
38	Hydrogel-based magnetoelectric microenvironments for tissue stimulation. Colloids and Surfaces B: Biointerfaces, 2019, 181, 1041-1047.	5.0	44
39	Osteoblast, fibroblast and in vivo biological response to poly(vinylidene fluoride) based composite materials. Journal of Materials Science: Materials in Medicine, 2013, 24, 395-403.	3.6	40
40	Electromechanical actuators based on poly(vinylidene fluoride) with [N1Â1Â1Â2(OH)][NTf2] and [C2mim] [C2SO4]. Journal of Materials Science, 2016, 51, 9490-9503.	3.7	40
41	Fiber average size and distribution dependence on the electrospinning parameters of poly(vinylidene) Tj ETQq1 Science and Processing, 2012, 109, 685-691.	1 0.78431 2.3	4 rgBT /Over 39
42	Magnetically Activated Electroactive Microenvironments for Skeletal Muscle Tissue Regeneration. ACS Applied Bio Materials, 2020, 3, 4239-4252.	4.6	39
43	Influence of electrospinning parameters on poly(hydroxybutyrate) electrospun membranes fiber size and distribution. Polymer Engineering and Science, 2014, 54, 1608-1617.	3.1	35
44	Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates. International Journal of Molecular Sciences, 2017, 18, 2391.	4.1	34
45	All-printed multilayer materials with improved magnetoelectric response. Journal of Materials Chemistry C, 2019, 7, 5394-5400.	5.5	34
46	Effect of filler content on morphology and physical–chemical characteristics of poly(vinylidene) Tj ETQq0 0 0	rgBT /Over 3.7	$\log_{30} 10$ Tf 50
47	Bioactive albumin functionalized polylactic acid membranes for improved biocompatibility. Reactive and Functional Polymers, 2013, 73, 1399-1404.	4.1	29
48	Physically Active Bioreactors for Tissue Engineering Applications. Advanced Biology, 2020, 4, e2000125.	3.0	29
49	Piezo- and Magnetoelectric Polymers as Biomaterials for Novel Tissue Engineering Strategies. MRS Advances, 2018, 3, 1671-1676.	0.9	26
50	Influence of fiber diameter and crystallinity on the stability of electrospun poly(l-lactic acid) membranes to hydrolytic degradation. Polymer Testing, 2012, 31, 770-776.	4.8	25
51	Magnetically Controlled Drug Release System through Magnetomechanical Actuation. Advanced Healthcare Materials, 2016, 5, 3027-3034.	7.6	25
52	Electroactive Polymers as Actuators. , 2017, , 319-352.		25
53	Silk fibroin magnetoactive nanocomposite films and membranes for dynamic bone tissue engineering strategies. Materialia, 2020, 12, 100709.	2.7	24
54	Processing and size range separation of pristine and magnetic poly(l -lactic acid) based microspheres for biomedical applications. Journal of Colloid and Interface Science, 2016, 476, 79-86.	9.4	23

#	Article	IF	CITATIONS
55	Tailored Biodegradable and Electroactive Poly(Hydroxybutyrate-Co-Hydroxyvalerate) Based Morphologies for Tissue Engineering Applications. International Journal of Molecular Sciences, 2018, 19, 2149.	4.1	23
56	Surface Charge-Mediated Cell–Surface Interaction on Piezoelectric Materials. ACS Applied Materials & Interfaces, 2020, 12, 191-199.	8.0	23
57	Printed multifunctional magnetically activated energy harvester with sensing capabilities. Nano Energy, 2022, 94, 106885.	16.0	22
58	Chitosan patterning on titanium implants. Progress in Organic Coatings, 2017, 111, 23-28.	3.9	21
59	Magnetic Bioreactor for Magneto-, Mechano- and Electroactive Tissue Engineering Strategies. Sensors, 2020, 20, 3340.	3.8	21
60	Thermal Properties of Electrospun Poly(Lactic Acid) Membranes. Journal of Macromolecular Science - Physics, 2012, 51, 411-424.	1.0	20
61	Polymeric Electrospun Fibrous Dressings for Topical Co-delivery of Acyclovir and Omega-3 Fatty Acids. Frontiers in Bioengineering and Biotechnology, 2019, 7, 390.	4.1	20
62	Reconfigurable 3D-printable magnets with improved maximum energy product. Journal of Materials Chemistry C, 2020, 8, 952-958.	5.5	18
63	Morphology Dependence Degradation of Electro- and Magnetoactive Poly(3-hydroxybutyrate-co-hydroxyvalerate) for Tissue Engineering Applications. Polymers, 2020, 12, 953.	4.5	18
64	Multifunctional Platform Based on Electroactive Polymers and Silica Nanoparticles for Tissue Engineering Applications. Nanomaterials, 2018, 8, 933.	4.1	16
65	Tailoring Electrospun Poly(<scp>l</scp> -lactic acid) Nanofibers as Substrates for Microfluidic Applications. ACS Applied Materials & Interfaces, 2020, 12, 60-69.	8.0	16
66	Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 2011, 12, 015001.	6.1	16
67	Improving Magnetoelectric Contactless Sensing and Actuation through Anisotropic Nanostructures. Journal of Physical Chemistry C, 2018, 122, 19189-19196.	3.1	15
68	Development of bio-hybrid piezoresistive nanocomposites using silk-elastin protein copolymers. Composites Science and Technology, 2019, 172, 134-142.	7.8	14
69	Tuning Myoblast and Preosteoblast Cell Adhesion Site, Orientation, and Elongation through Electroactive Micropatterned Scaffolds. ACS Applied Bio Materials, 2019, 2, 1591-1602.	4.6	14
70	Patterned Piezoelectric Scaffolds for Osteogenic Differentiation. International Journal of Molecular Sciences, 2020, 21, 8352.	4.1	14
71	Silica nanoparticles surface charge modulation of the electroactive phase content and physical-chemical properties of poly(vinylidene fluoride) nanocomposites. Composites Part B: Engineering, 2020, 185, 107786.	12.0	14
72	Design and validation of a biomechanical bioreactor for cartilage tissue culture. Biomechanics and Modeling in Mechanobiology, 2016, 15, 471-478.	2.8	13

#	Article	IF	CITATIONS
73	Connecting free volume with shape memory properties in noncytotoxic gammaâ€irradiated polycyclooctene. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1080-1088.	2.1	12
74	Piezoresistive sensors for force mapping of hip-prostheses. Sensors and Actuators A: Physical, 2013, 195, 133-138.	4.1	10
75	Immunomodulatory and regenerative effects of the full and fractioned adipose tissue derived stem cells secretome in spinal cord injury. Experimental Neurology, 2022, 351, 113989.	4.1	10
76	Greener Solvent-Based Processing of Magnetoelectric Nanocomposites. ACS Sustainable Chemistry and Engineering, 2022, 10, 4122-4132.	6.7	10
77	Mechanical fatigue performance of PCLâ€chondroprogenitor constructs after cell culture under bioreactor mechanical stimulus. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 330-338.	3.4	9
78	Understanding Myoblast Differentiation Pathways When Cultured on Electroactive Scaffolds through Proteomic Analysis. ACS Applied Materials & amp; Interfaces, 2022, 14, 26180-26193.	8.0	9
79	Biodegradable Hydrogels Loaded with Magnetically Responsive Microspheres as 2D and 3D Scaffolds. Nanomaterials, 2020, 10, 2421.	4.1	8
80	Environmentally Friendly Conductive Screenâ€Printable Inks Based on Nâ€Doped Graphene and Polyvinylpyrrolidone. Advanced Engineering Materials, 2022, 24, 2101258.	3.5	8
81	Fabrication of Poly(lactic acid)-Poly(ethylene oxide) Electrospun Membranes with Controlled Micro to Nanofiber Sizes. Journal of Nanoscience and Nanotechnology, 2012, 12, 6746-6753.	0.9	7
82	Electroactive poly(vinylidene fluoride)-based materials: recent progress, challenges, and opportunities. , 2020, , 1-43.		7
83	Biodegradable polymer-based microfluidic membranes for sustainable point-of-care devices. Chemical Engineering Journal, 2022, 448, 137639.	12.7	7
84	Metamorphic biomaterials. , 2017, , 69-99.		6
85	Fractionating stem cells secretome for Parkinson's disease modeling: Is it the whole better than the sum of its parts?. Biochimie, 2021, 189, 87-98.	2.6	6
86	Natural based reusable materials for microfluidic substrates: The silk road towards sustainable portable analytical systems. Applied Materials Today, 2022, 28, 101507.	4.3	6
87	Electroactive poly(vinylidene fluoride) electrospun fiber mats coated with polyaniline and polypyrrole for tissue regeneration applications. Reactive and Functional Polymers, 2022, 170, 105118.	4.1	4
88	Tuning magnetic response and ionic conductivity of electrospun hybrid membranes for tissue regeneration strategies. Polymers for Advanced Technologies, 2022, 33, 1233-1243.	3.2	4
89	Piezoelectric biodegradable poly(3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate) based electrospun fiber mats with tailored porosity. Polymers for Advanced Technologies, 0, , .	3.2	4
90	Ionic liquid modified electroactive polymer-based microenvironments for tissue engineering. Polymer, 2022, 246, 124731.	3.8	4

#	Article	IF	CITATIONS
91	Electroactive functional microenvironments from bioactive polymers: A new strategy to address cancer. , 2022, 137, 212849.		4
92	Multidimensional Biomechanics Approaches Though Electrically and Magnetically Active Microenvironments. , 2019, , 253-267.		3
93	Micro- and nanostructured piezoelectric polymers. Frontiers of Nanoscience, 2019, , 35-65.	0.6	3
94	Electrospun Polymeric Smart Materials for Tissue Engineering Applications. , 2017, , 251-282.		2
95	Poly(lactic-co-glycolide) based biodegradable electrically and magnetically active microenvironments for tissue regeneration applications. European Polymer Journal, 2022, , 111197.	5.4	2
96	Piezoelectric Polymers and Polymer Composites for Sensors and Actuators. , 2018, , .		0
97	Silk Fibroin Magnetoactive Nanocomposite Films and Membranes for Dynamic Bone Tissue Engineering Strategies. SSRN Electronic Journal, 0, , .	0.4	0
98	lonic-triggered magnetoelectric coupling for magnetic sensing applications. Applied Materials Today, 2022, 29, 101590.	4.3	0