
## Matthew I Daws

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6759762/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Phosphorus supply affects seedling growth of mycorrhizal but not cluster-root forming jarrah-forest species. Plant and Soil, 2022, 472, 577-594.                                                                                                                 | 1.8 | 6         |
| 2  | Climate drives patterns of seed traits in <i>Quercus</i> species across China. New Phytologist, 2022, 234, 1629-1638.                                                                                                                                            | 3.5 | 11        |
| 3  | Nutrient enrichment diminishes plant diversity and density, and alters long-term ecological trajectories, in a biodiverse forest restoration. Ecological Engineering, 2021, 165, 106222.                                                                         | 1.6 | 12        |
| 4  | Beyond species richness and community composition: Using plant functional diversity to measure restoration success in jarrah forest. Applied Vegetation Science, 2021, 24, e12607.                                                                               | 0.9 | 4         |
| 5  | The benefits of fertiliser application on tree growth are transient in restored jarrah forest. Trees,<br>Forests and People, 2021, 5, 100112.                                                                                                                    | 0.8 | 3         |
| 6  | AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.                                                                                                                                                               | 2.4 | 73        |
| 7  | The where, when and what of phosphorus fertilisation for seedling establishment in a biodiverse<br>jarrah forest restoration after bauxite mining in Western Australia. Ecological Engineering, 2020, 153,<br>105907.                                            | 1.6 | 13        |
| 8  | Enduring effects of large legumes and phosphorus fertiliser on jarrah forest restoration 15†years after bauxite mining. Forest Ecology and Management, 2019, 438, 204-214.                                                                                       | 1.4 | 15        |
| 9  | Sensitivity of seedling growth to phosphorus supply in six tree species of the Australian Great<br>Western Woodlands. Australian Journal of Botany, 2019, 67, 390.                                                                                               | 0.3 | 14        |
| 10 | Too much of a good thing: phosphorus over-fertilisation in rehabilitated landscapes of high biodiversity value. , 2019, , .                                                                                                                                      |     | 7         |
| 11 | Applied phosphorus has long-term impacts on vegetation responses in restored jarrah forest. , 2019, , .                                                                                                                                                          |     | 4         |
| 12 | Nestedness patterns reveal impacts of reduced rainfall on seedling establishment in restored jarrah<br>forest. Forest Ecology and Management, 2018, 427, 242-249.                                                                                                | 1.4 | 4         |
| 13 | Alternating temperature combined with darkness resets base temperature for germination<br>( <i>T</i> <sub>b</sub> ) in photoblastic seeds of <i>Lippia</i> and <i>Aloysia</i> (Verbenaceae). Plant<br>Biology, 2017, 19, 41-45.                                  | 1.8 | 24        |
| 14 | A standardised Landsat time series (1973–2016) of forest leaf area index using pseudoinvariant features<br>and spectral vegetation index isolines and a catchment hydrology application. Remote Sensing<br>Applications: Society and Environment, 2017, 6, 1-14. | 0.8 | 10        |
| 15 | Thermal buffering capacity of the germination phenotype across the environmental envelope of the Cactaceae. Global Change Biology, 2017, 23, 5309-5317.                                                                                                          | 4.2 | 44        |
| 16 | Habitat-linked temperature requirements for fruit germination in Quercus species: A comparative<br>study of Quercus subgenus Cyclobalanopsis (Asian evergreen oaks) and Quercus subgenus Quercus.<br>South African Journal of Botany, 2015, 100, 108-113.        | 1.2 | 16        |
| 17 | The crypsis hypothesis explained: a reply to Jayasuriya et al. (2015). Seed Science Research, 2015, 25, 402-408.                                                                                                                                                 | 0.8 | 6         |
| 18 | Long-term restoration success of re-sprouter understorey species is facilitated by protection from herbivory and a reduction in competition. Plant Ecology, 2015, 216, 565-576.                                                                                  | 0.7 | 32        |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Longâ€term data suggest jarrahâ€forest establishment at restored mine sites is resistant to climate<br>variability. Journal of Ecology, 2015, 103, 78-89.                                                                                        | 1.9 | 31        |
| 20 | Phosphorus fertilisation and large legume species affect jarrah forest restoration after bauxite mining. Forest Ecology and Management, 2015, 354, 10-17.                                                                                        | 1.4 | 23        |
| 21 | Management-driven evolution in a domesticated ecosystem. Biology Letters, 2014, 10, 20131082.                                                                                                                                                    | 1.0 | 34        |
| 22 | Is broad-scale smoke–water application always a useful tool for improving seedling emergence in<br>post-mining restoration? Evidence from jarrah forest restoration in Western Australia. South<br>African Journal of Botany, 2014, 90, 109-113. | 1.2 | 6         |
| 23 | Campanulaceae: a family with small seeds that require light for germination. Annals of Botany, 2014, 113, 135-143.                                                                                                                               | 1.4 | 54        |
| 24 | Mass propagation of Austral Bracken Fern (Pteridium esculentum) sporophytes from in vitro gametophyte cultures. South African Journal of Botany, 2014, 91, 6-8.                                                                                  | 1.2 | 2         |
| 25 | Effectiveness of plant guards in reducing grazing of Tetraria capillaris in restored bauxite mines in<br>Western Australia. South African Journal of Botany, 2013, 87, 4-8.                                                                      | 1.2 | 9         |
| 26 | Physical dormancy in seeds: a game of hide and seek?. New Phytologist, 2013, 198, 496-503.                                                                                                                                                       | 3.5 | 98        |
| 27 | Conditional cold avoidance drives between-population variation in germination behaviour in Calluna vulgaris. Annals of Botany, 2013, 112, 801-810.                                                                                               | 1.4 | 23        |
| 28 | Nitrogen and phosphorus fertilizer regime affect jarrah forest restoration after bauxite mining in <scp>W</scp> estern <scp>A</scp> ustralia. Applied Vegetation Science, 2013, 16, 610-618.                                                     | 0.9 | 30        |
| 29 | A comparative study of desiccation responses of seeds of Asian Evergreen Oaks, Quercus subgenus<br>Cyclobalanopsis and Quercus subgenus Quercus. South African Journal of Botany, 2012, 78, 47-54.                                               | 1.2 | 42        |
| 30 | Rates of Water Loss and Uptake in Recalcitrant Fruits of Quercus Species Are Determined by Pericarp<br>Anatomy. PLoS ONE, 2012, 7, e47368.                                                                                                       | 1.1 | 35        |
| 31 | The Role of Botanic Gardens in the Science and Practice of Ecological Restoration. Conservation Biology, 2011, 25, no-no.                                                                                                                        | 2.4 | 48        |
| 32 | Seed-based approach for identifying flora at risk from climate warming. Austral Ecology, 2011, 36, 923-935.                                                                                                                                      | 0.7 | 75        |
| 33 | Effects of developmental heat sum on fruit traits of clonal lines of Quercus petraea grown under controlled conditions. Plant Growth Regulation, 2011, 64, 203-206.                                                                              | 1.8 | 11        |
| 34 | Replicated versus un-replicated factorial experiments for preliminary investigation of seed<br>germination and dormancy: alternative approaches using fewer seeds. Seed Science and Technology,<br>2011, 39, 93-111.                             | 0.6 | 3         |
| 35 | Seed germination of Echinopsis schickendantzii (Cactaceae): the effects of constant and alternating temperatures. Seed Science and Technology, 2011, 39, 219-224.                                                                                | 0.6 | 12        |
| 36 | Physical seed dormancy in Collaea argentina (Fabaceae) and Abutilon pauciflorum (Malvaceae) after 4<br>years storage. Seed Science and Technology, 2010, 38, 777-782.                                                                            | 0.6 | 16        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Prescribed burning of northern heathlands: CallunaÂvulgaris germination cues and seed-bank<br>dynamics. Plant Ecology, 2010, 207, 245-256.                                                                                    | 0.7 | 64        |
| 38 | Glutathione half-cell reduction potential as a seed viability marker of the potential oilseed crop<br>Vernonia galamensis. Industrial Crops and Products, 2010, 32, 687-691.                                                  | 2.5 | 16        |
| 39 | Comparative germination ecology of the endemic <i>Centranthus amazonum</i> (Valerianaceae) and its widespread congener <i>Centranthus ruber</i> . Plant Species Biology, 2010, 25, 165-172.                                   | 0.6 | 23        |
| 40 | Onset of Dormancy, Dormancy Levels, and Appropriate Seed Production Environment for Two<br>Subspecies of <i>Vernonia galamensis</i> (Cass.) Less. Journal of New Seeds, 2010, 11, 16-27.                                      | 0.3 | 2         |
| 41 | Ecological and morphological seed traits of Polygala sardoa and P. sinisica: A comparative study on<br>two endemic species of Sardinia. Flora: Morphology, Distribution, Functional Ecology of Plants, 2010,<br>205, 825-831. | 0.6 | 3         |
| 42 | Seed dormancy and germination ecology of Lamyropsis microcephala: a mountain endemic species of<br>Sardinia (Italy). Seed Science and Technology, 2009, 37, 491-497.                                                          | 0.6 | 13        |
| 43 | Effects of temperature, light and pre-chilling on germination of Rhamnus persicifolia, an endemic tree species of Sardinia (Italy). Seed Science and Technology, 2009, 37, 758-764.                                           | 0.6 | 7         |
| 44 | Seed mass and germination in Asteraceae species of Argentina. Seed Science and Technology, 2009, 37, 786-790.                                                                                                                 | 0.6 | 18        |
| 45 | Germination and dormancy breaking requirements for Vernonia galamensis (Asteraceae). Seed Science and Technology, 2009, 37, 1-9.                                                                                              | 0.6 | 4         |
| 46 | Smoke-derived butenolide: Towards understanding its biological effects. South African Journal of<br>Botany, 2009, 75, 1-7.                                                                                                    | 1.2 | 112       |
| 47 | The relationship between seed mass and mean time to germination for 1037 tree species across five tropical forests. Functional Ecology, 2009, 23, 203-210.                                                                    | 1.7 | 155       |
| 48 | Ecological correlates of ex situ seed longevity: a comparative study on 195 species. Annals of Botany, 2009, 104, 57-69.                                                                                                      | 1.4 | 235       |
| 49 | Germination requirements of the alpine endemic Silene elisabethae Jan: effects of cold stratification,<br>light and GA3. Seed Science and Technology, 2009, 37, 79-87.                                                        | 0.6 | 17        |
| 50 | Butenolide from plant-derived smoke functions as a strigolactone analogue: Evidence from parasitic weed seed germination. South African Journal of Botany, 2008, 74, 116-120.                                                 | 1.2 | 34        |
| 51 | Physiological dormancy in forbs native to south–west Queensland: Diagnosis and classification.<br>South African Journal of Botany, 2008, 74, 208-213.                                                                         | 1.2 | 23        |
| 52 | Pre- and Post-harvest Influences on Seed Dormancy Status of an Australian Goodeniaceae species,<br>Goodenia fascicularis. Annals of Botany, 2008, 102, 93-101.                                                                | 1.4 | 40        |
| 53 | Germination Responses to Water Potential in Neotropical Pioneers Suggest Large-seeded Species Take<br>More Risks. Annals of Botany, 2008, 102, 945-951.                                                                       | 1.4 | 90        |
| 54 | Sources of variation in germination of Xanthorrhoea johnsonii (Xanthorrhoeaceae) seeds: maternal<br>plant and seed mass effects. Seed Science and Technology, 2008, 36, 657-666.                                              | 0.6 | 4         |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Mimicking a Semi-arid Tropical Environment Achieves Dormancy Alleviation for Seeds of Australian<br>Native Goodeniaceae and Asteraceae. Annals of Botany, 2008, 101, 701-708.                                        | 1.4 | 38        |
| 56 | Pre- and post-harvest influences on physiological dormancy alleviation of an Australian Asteraceae species: Actinobole uliginosum (A. Gray) H. Eichler. Seed Science Research, 2008, 18, 191-199.                    | 0.8 | 15        |
| 57 | Two-hundred-year seed survival of Leucospermum and two other woody species from the Cape<br>Floristic region, South Africa. Seed Science Research, 2007, 17, 73-79.                                                  | 0.8 | 37        |
| 58 | Seed size and chilling affect germination of Larix decidua Mill. seeds. Seed Science and Technology, 2007, 35, 508-513.                                                                                              | 0.6 | 6         |
| 59 | Loss of desiccation tolerance during germination in neo-tropical pioneer seeds: implications for seed mortality and germination characteristics. Seed Science Research, 2007, 17, 273-281.                           | 0.8 | 29        |
| 60 | Responses of Liriope platyphylla F.T. Wang & T. Tang and Ophiopogon japonicus (L.f.) Ker Gawl. seeds to desiccation. Seed Science and Technology, 2007, 35, 129-133.                                                 | 0.6 | 3         |
| 61 | Impact of redÂ:Âfar red ratios on germination of temperate forest herbs in relation to shade tolerance, seed mass and persistence in the soil. Functional Ecology, 2007, 21, 1055-1062.                              | 1.7 | 124       |
| 62 | Do invasive species have bigger seeds? Evidence from intra- and inter-specific comparisons. South<br>African Journal of Botany, 2007, 73, 138-143.                                                                   | 1.2 | 44        |
| 63 | Extreme thermo-tolerance in seeds of desert succulents is related to maximum annual temperature.<br>South African Journal of Botany, 2007, 73, 262-265.                                                              | 1.2 | 21        |
| 64 | Butenolide from plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regulation, 2007, 51, 73-82.                                                                       | 1.8 | 114       |
| 65 | Allometric relationships between seed mass and seedling characteristics reveal trade-offs for neotropical gap-dependent species. Oecologia, 2007, 154, 445-454.                                                      | 0.9 | 40        |
| 66 | Variable desiccation tolerance in Acer pseudoplatanus seeds in relation to developmental conditions:<br>a case of phenotypic recalcitrance?. Functional Plant Biology, 2006, 33, 59.                                 | 1.1 | 69        |
| 67 | Effect of high temperature on chalazal plug removal and germination in Apeiba tibourbou Aubl Seed<br>Science and Technology, 2006, 34, 221-225.                                                                      | 0.6 | 16        |
| 68 | Pressure – time dependency of vacuum degassing as a rapid method for viability assessment using<br>tetrazolium chloride: a comparative study of 17 Pinus species. Seed Science and Technology, 2006, 34,<br>475-483. | 0.6 | 5         |
| 69 | Prediction of Desiccation Sensitivity in Seeds of Woody Species: A Probabilistic Model Based on Two<br>Seed Traits and 104 Species. Annals of Botany, 2006, 97, 667-674.                                             | 1.4 | 124       |
| 70 | Effects of topographic position, leaf litter and seed size on seedling demography in a semi-deciduous<br>tropical forest in Panamá. Plant Ecology, 2005, 179, 93-105.                                                | 0.7 | 48        |
| 71 | Seed mass variation potentially masks a single critical water content in recalcitrant seeds. Seed<br>Science Research, 2004, 14, 185-195.                                                                            | 0.8 | 38        |
| 72 | Ecological correlates of seed desiccation tolerance in tropical African dryland trees. American<br>Journal of Botany, 2004, 91, 863-870.                                                                             | 0.8 | 122       |

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Developmental heat sum influences recalcitrant seed traits in Aesculus hippocastanum across Europe.<br>New Phytologist, 2004, 162, 157-166.                       | 3.5 | 118       |
| 74 | Patterns in the seed germination response to smoke in plants from the Cape Floristic Region, South<br>Africa. South African Journal of Botany, 2003, 69, 514-525. | 1.2 | 72        |
| 75 | Differences in seed germination responses may promote coexistence of four sympatric Piper species.<br>Functional Ecology, 2002, 16, 258-267.                      | 1.7 | 128       |
| 76 | Topographic position affects the water regime in a semideciduous tropical forest in PanamÃi. Plant and<br>Soil, 2002, 238, 79-89.                                 | 1.8 | 150       |