Marina Lamberti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6758547/publications.pdf

Version: 2024-02-01

218677 276875 1,760 45 26 41 citations h-index g-index papers 46 46 46 1241 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Gradient Isotactic Multiblock Polylactides from Aluminum Complexes of Chiral Salalen Ligands. Journal of the American Chemical Society, 2014, 136, 2940-2943.	13.7	204
2	Random Copolymerization of $\hat{l}\mu$ -Caprolactone and Lactides Promoted by Pyrrolylpyridylamido Aluminum Complexes. Macromolecules, 2012, 45, 8614-8620.	4.8	94
3	Syndiospecific Polymerization of Propene Promoted by Bis(salicylaldiminato)titanium Catalysts:Â Regiochemistry of Monomer Insertion and Polymerization Mechanism. Macromolecules, 2002, 35, 658-663.	4.8	87
4	Versatile Copolymerization of Glycolide and rac-Lactide by Dimethyl(salicylaldiminato)aluminum Compounds. Macromolecules, 2014, 47, 534-543.	4.8	82
5	Phenoxy-Thioether Aluminum Complexes as Îμ-Caprolactone and Lactide Polymerization Catalysts. Organometallics, 2012, 31, 5551-5560.	2.3	81
6	Ring-opening homo- and co-polymerization of lactides and $\hat{l}\mu$ -caprolactone by salalen aluminum complexes. Dalton Transactions, 2015, 44, 2157-2165.	3.3	75
7	Coordination Chemistry and Reactivity of Zinc Complexes Supported by a Phosphido Pincer Ligand. Chemistry - A European Journal, 2012, 18, 2349-2360.	3.3	69
8	Bimetallic salen aluminum complexes: cooperation between reactive centers in the ring-opening polymerization of lactides and epoxides. Dalton Transactions, 2016, 45, 16001-16010.	3.3	59
9	Salen, salan and salalen iron(<scp>iii</scp>) complexes as catalysts for CO ₂ /epoxide reactions and ROP of cyclic esters. Dalton Transactions, 2018, 47, 13229-13238.	3.3	59
10	Mechanism of stereospecific polymerization of α-olefins by late-transition metal and octahedral group 4 metal catalysts. Coordination Chemistry Reviews, 2009, 253, 2082-2097.	18.8	56
11	Fluorescent <i>salen</i> -type Zn(II) Complexes As Probes for Detecting Hydrogen Sulfide and Its Anion: Bioimaging Applications. Inorganic Chemistry, 2020, 59, 15977-15986.	4.0	49
12	Salen-type aluminum and zinc complexes as two-faced Janus compounds: contribution to molecular sensing and polymerization catalysis. Dalton Transactions, 2020, 49, 16533-16550.	3. 3	49
13	Carbon Dioxide/Epoxide Reactions Catalyzed by Bimetallic Salalen Aluminum Complexes. ChemCatChem, 2016, 8, 455-460.	3.7	48
14	A Binaphthyl-Bridged Salen Zirconium Catalyst Affording Atactic Poly(propylene) and Isotactic Poly(α-olefins). Macromolecular Rapid Communications, 2005, 26, 1866-1871.	3.9	46
15	Ringâ€Opening Copolymerization of Epoxides with Cyclic Anhydrides Promoted by Bimetallic and Monometallic Phenoxy–Imine Aluminum complexes. ChemCatChem, 2017, 9, 2972-2979.	3.7	43
16	Ringâ€opening polymerization of cyclic esters promoted by phosphidoâ€diphosphine pincer group 3 complexes. Journal of Polymer Science Part A, 2011, 49, 403-413.	2.3	42
17	Phosphidoâ€diphosphine pincer group 3 complexes as efficient initiators for lactide polymerization. Journal of Polymer Science Part A, 2010, 48, 1374-1382.	2.3	41
18	Copolymerization of cyclic esters, epoxides and anhydrides: evidence of the dual role of the monomers in the reaction mixture. Catalysis Science and Technology, 2018, 8, 5034-5043.	4.1	39

#	Article	IF	CITATIONS
19	Chemically reversible binding of H ₂ S to a zinc porphyrin complex: towards implementation of a reversible sensor via a "coordinative-based approach― Dalton Transactions, 2017, 46, 1872-1877.	3.3	37
20	Selective Synthesis of Cyclic Carbonate by Salalen–Aluminum Complexes and Mechanistic Studies. ChemSusChem, 2017, 10, 1217-1223.	6.8	37
21	Ring-opening polymerization of cyclic esters by phenoxy-thioether complexes derived from biocompatible metals. Dalton Transactions, 2013, 42, 13036.	3.3	36
22	Bis(phenoxyimine)zirconium and -titanium Catalysts Affording Prevailingly Syndiotactic Polypropylenes via Opposite Modes of Monomer Insertion. Macromolecules, 2004, 37, 276-282.	4.8	32
23	Ring-opening polymerization of ω-6-hexadecenlactone by a salicylaldiminato aluminum complex: a route to semicrystalline and functional poly(ester)s. Polymer Chemistry, 2015, 6, 1727-1740.	3.9	32
24	Phenoxyaldimine and Phenoxyketimine Titanium Complexes in Propene Polymerization. A Different Effect of o-Phenoxy Halide Substituents. Macromolecules, 2006, 39, 7812-7820.	4.8	29
25	Interaction of monohydrogensulfide with a family of fluorescent pyridoxal-based Zn(ii) receptors. Dalton Transactions, 2018, 47, 17392-17400.	3.3	28
26	Polymerization of ethylene and propene promoted by binaphthyl-bridged Schiff base complexes of titanium. Journal of Molecular Catalysis A, 2006, 258, 284-291.	4.8	27
27	Rare earth complexes of phenoxy-thioether ligands: synthesis and reactivity in the ring opening polymerization of cyclic esters. Dalton Transactions, 2013, 42, 9338.	3.3	24
28	A Comparative Study on the Polymerization of <i>α</i> â€Olefins Catalyzed by Salen and Salan Zirconium Complexes. Macromolecular Chemistry and Physics, 2008, 209, 585-592.	2.2	22
29	Zinc (II) porphyrins as viable scaffolds to stabilize hydrogen sulfide binding at the metal center. Inorganica Chimica Acta, 2017, 466, 426-431.	2.4	21
30	Ringâ€Opening Polymerization of Racemic βâ€Butyrolactone Promoted by Salanâ€and Salenâ€Type Yttrium Amido Complexes. Macromolecular Chemistry and Physics, 2013, 214, 1965-1972.	2.2	20
31	Tetracoordinate aluminum complexes bearing phenoxy-based ligands as catalysts for epoxide/anhydride copolymerization: some mechanistic insights. Catalysis Science and Technology, 2019, 9, 3090-3098.	4.1	20
32	Polymerization of \hat{l}_{\pm} -olefins promoted by zirconium complexes bearing bis(phenoxy-imine) ligands with ortho-phenoxy halogen substituents. Journal of Molecular Catalysis A, 2009, 297, 9-17.	4.8	18
33	Group 4 bis(chelate) metal complexes of monoanionic bidentate [E,O \hat{a}] ligands (E = O, S): synthesis and application as \hat{l} ±-olefin polymerization catalysts. Dalton Transactions, 2009, , 8831.	3.3	18
34	Phosphidoâ€diphosphine pincer aluminum complexes as catalysts for ring opening polymerization of cyclic esters. Journal of Polymer Science Part A, 2014, 52, 49-60.	2.3	16
35	Synthesis of a mononuclear magnesium bis(alkoxide) complex and its reactivity in the ring-opening copolymerization of cyclic anhydrides with epoxides. Dalton Transactions, 2020, 49, 2715-2723.	3.3	16
36	Random l-lactide/ε-caprolactone copolymers as drug delivery materials. Journal of Materials Science, 2014, 49, 5986-5996.	3.7	14

#	Article	IF	CITATIONS
37	The contribution of metalloporphyrin complexes in molecular sensing and in sustainable polymerization processes: a new and unique perspective. Dalton Transactions, 2021, 50, 7898-7916.	3.3	14
38	Imidazo-pyridine-based Zinc (II) complexes as fluorescent hydrogen sulfide probes Dalton Transactions, 2021, 50, 17075-17085.	3.3	13
39	Aldimineâ€Thioetherâ€Phenolate Based Mono―and Bimetallic Zinc Complexes as Catalysts for the Reaction of CO ₂ with Cyclohexene Oxide. European Journal of Inorganic Chemistry, 2020, 2020, 1645-1653.	2.0	12
40	Ringâ€opening polymerization of cyclic esters by pincer complexes derived from alkaline earth metals. Applied Organometallic Chemistry, 2014, 28, 140-145.	3.5	11
41	Copolymerization and terpolymerization of glycolide with lactones by dimethyl(salicylaldiminato)aluminum compounds. Journal of Applied Polymer Science, 2015, 132, .	2.6	11
42	Reactivity of monohydrogensulfide with a suite of pyridoxal-based complexes: A combined NMR, ESI-MS, UV–visible and fluorescence study. Inorganica Chimica Acta, 2020, 501, 119235.	2.4	9
43	Stereospecific and Stereoselective Polymerization of 4â€Methylâ€1â€hexene by Enantiomeric Binaphthylâ€Bridged Salen Dichlorozirconium (IV) Complexes. Macromolecular Rapid Communications, 2007, 28, 1912-1917.	3.9	8
44	Copolymerization of L-Lactide and $\hat{l}\mu\text{-Caprolactone}$ promoted by zinc complexes with phosphorus based ligands. Heliyon, 2021, 7, e07630.	3.2	7
45	Paper-Strip-Based Sensors for H2S Detection: A Proof-of-Principle Study. Sensors, 2022, 22, 3173.	3.8	5