DuÅjan M Zorica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6758475/publications.pdf

Version: 2024-02-01

394421 454955 1,159 63 19 30 citations g-index h-index papers 70 70 70 663 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Transmission line modeling by fractional and topological generalization of the telegrapher's equation., 2022,, 355-401.		O
2	Fractional Burgers wave equation on a finite domain. Chaos, Solitons and Fractals, 2022, 154, 111632.	5.1	2
3	Frequency Characteristics of Dissipative and Generative Fractional RLC Circuits. Circuits, Systems, and Signal Processing, 2022, 41, 4717-4754.	2.0	3
4	Electromagnetic field in a conducting medium modeled by the fractional Ohm's law. Communications in Nonlinear Science and Numerical Simulation, 2022, 114, 106706.	3.3	0
5	Non-local telegrapher's equation as a transmission line model. Applied Mathematics and Computation, 2021, 390, 125602.	2.2	3
6	Fractional <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>R</mml:mi><mml:mi>L</mml:mi><mml:mi>C</mml:mi>occord for transient and steady state regimes. Communications in Nonlinear Science and Numerical Simulation, 2021, 96, 105670.</mml:mrow></mml:math>	/mml:matl	h>circuit 16
7	Dissipative and generative fractional electric elements in modeling \$\${varvec{RC}}\$\$ and \$\${varvec{RL}}\$\$ circuits. Nonlinear Dynamics, 2021, 105, 3451-3474.	5.2	3
8	Fractional Burgers models in creep and stress relaxation tests. Applied Mathematical Modelling, 2020, 77, 1894-1935.	4.2	22
9	Frequency Characteristics of Two Topologies Representing Fractional Order Transmission Line Model. Circuits, Systems, and Signal Processing, 2020, 39, 456-473.	2.0	4
10	Energy dissipation for hereditary and energy conservation for non-local fractional wave equations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190295.	3.4	7
11	Hereditariness and non-locality in wave propagation modeling. Theoretical and Applied Mechanics, 2020, 47, 19-31.	0.3	1
12	Fractional Burgers wave equation. Acta Mechanica, 2019, 230, 4321-4340.	2.1	4
13	Distributed-order fractional constitutive stress–strain relation in wave propagation modeling. Zeitschrift Fur Angewandte Mathematik Und Physik, 2019, 70, 1.	1.4	19
14	Bifurcation analysis of the rotating axially compressed nanoâ€rod with imperfections. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2019, 99, e201800284.	1.6	1
15	Solvability and microlocal analysis of the fractional Eringen wave equation. Mathematics and Mechanics of Solids, 2018, 23, 1420-1430.	2.4	2
16	A non-linear thermo-viscoelastic rheological model based on fractional derivatives for high temperature creep in concrete. Applied Mathematical Modelling, 2018, 55, 551-568.	4.2	47
17	Analytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-order heat conduction law. Physica A: Statistical Mechanics and Its Applications, 2018, 492, 2316-2335.	2.6	20
18	Properties of the Caputo-Fabrizio fractional derivative and its distributional settings. Fractional Calculus and Applied Analysis, 2018, 21, 29-44.	2.2	59

#	Article	IF	Citations
19	Formulation of thermodynamically consistent fractional Burgers models. Acta Mechanica, 2018, 229, 3557-3570.	2.1	10
20	Fractional telegrapher's equation as a consequence of Cattaneo's heat conduction law generalization. Theoretical and Applied Mechanics, 2018, 45, 35-51.	0.3	3
21	Dynamic Stability of Axially Loaded Nonlocal Rod on Generalized Pasternak Foundation. Journal of Engineering Mechanics - ASCE, 2017, 143, .	2.9	9
22	Euler–Lagrange Equations for Lagrangians Containing Complex-order Fractional Derivatives. Journal of Optimization Theory and Applications, 2017, 174, 256-275.	1.5	11
23	Generalized time-fractional telegrapher's equation in transmission line modeling. Nonlinear Dynamics, 2017, 88, 1453-1472.	5.2	30
24	Microlocal analysis of fractional wave equations. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2017, 97, 217-225.	1.6	5
25	Viscoelastic body colliding against a rigid wall with and without dry friction effects. Applied Mathematical Modelling, 2017, 45, 365-382.	4.2	2
26	Buckling and Postbuckling of a Heavy Compressed Nanorod on Elastic Foundation. Journal of Nanomechanics & Micromechanics, 2017, 7, 04017004.	1.4	7
27	Frequency analysis of generalized time-fractional telegrapher's equation. , 2017, , .		3
28	Fractional two-compartmental model for articaine serum levels. Heat and Mass Transfer, 2016, 52, 1125-1130.	2.1	0
29	Complex order fractional derivatives in viscoelasticity. Mechanics of Time-Dependent Materials, 2016, 20, 175-195.	4.4	32
30	Rotating Nanorod with Clamped Ends. International Journal of Structural Stability and Dynamics, 2015, 15, 1450050.	2.4	6
31	Nano- and viscoelastic Beck's column on elastic foundation. Acta Mechanica, 2015, 226, 2335-2345.	2.1	12
32	Vibrations of an elastic rod on a viscoelastic foundation of complex fractional Kelvin–Voigt type. Meccanica, 2015, 50, 1679-1692.	2.0	23
33	Viscoelastic properties of uncured resin composites: Dynamic oscillatory shear test and fractional derivative model. Dental Materials, 2015, 31, 1003-1009.	3.5	11
34	Space–time fractional Zener wave equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140614.	2.1	11
35	Lateral Vibrations and Stability of Viscoelastic Rods. , 2014, , 123-184.		0
36	Fractional Heat Conduction Equations. , 2014, , 257-287.		1

#	Article	IF	CITATIONS
37	Stability of the rotating compressed nanoâ€rod. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2014, 94, 499-504.	1.6	6
38	Expansion formula for fractional derivatives in variational problems. Journal of Mathematical Analysis and Applications, 2014, 409, 911-924.	1.0	20
39	An initial value problem arising in mechanics. Archive of Applied Mechanics, 2014, 84, 219-233.	2.2	2
40	Convergence analysis of a numerical scheme for two classes of non-linear fractional differential equations. Applied Mathematics and Computation, 2014, 243, 611-623.	2.2	4
41	Basic Definitions and Properties of Fractional Integrals and Derivatives., 2014,, 17-47.		0
42	Waves in Viscoelastic Materials of Fractional-Order Type. , 2014, , 49-147.		0
43	Forced Oscillations of a System: Viscoelastic Rod and Body. , 2014, , 149-242.		0
44	Impact of Viscoelastic Body Against the Rigid Wall. , 2014, , 243-277.		0
45	Variational Problems with Fractional Derivatives. , 2014, , 279-377.		1
46	Basic Definitions and Properties of Fractional Integrals and Derivatives., 2014,, 17-47.		0
47	Fractional Diffusion-Wave Equations. , 2014, , 185-255.		0
48	Restrictions Following from the Thermodynamics for Fractional Derivative Models of a Viscoelastic Body., 2014,, 49-82.		0
49	Vibrations with Fractional Dissipation. , 2014, , 83-122.		1
50	Forced oscillations of a body attached to a viscoelastic rod of fractional derivative type. International Journal of Engineering Science, 2013, 64, 54-65.	5.0	17
51	An expansion formula for fractional derivatives of variable order. Open Physics, 2013, 11, .	1.7	10
52	On the fractional generalization of Eringen $\hat{E}\frac{1}{4}$ s nonlocal elasticity for wave propagation. Comptes Rendus - Mecanique, 2013, 341, 298-303.	2.1	55
53	A model of the viscoelastic behavior of flowable resin composites prior to setting. Dental Materials, 2013, 29, 929-934.	3.5	33
54	The Cattaneo type space-time fractional heat conduction equation. Continuum Mechanics and Thermodynamics, 2012, 24, 293-311.	2.2	38

#	Article	IF	CITATIONS
55	Complementary variational principles with fractional derivatives. Acta Mechanica, 2012, 223, 685-704.	2.1	10
56	Waves in viscoelastic media described by a linear fractional model. Integral Transforms and Special Functions, 2011, 22, 283-291.	1.2	27
57	Distributed-order fractional wave equation on a finite domain: creep and forced oscillations of a rod. Continuum Mechanics and Thermodynamics, 2011, 23, 305-318.	2.2	33
58	Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod. International Journal of Engineering Science, 2011, 49, 175-190.	5.0	59
59	Thermodynamical Restrictions and Wave Propagation for a Class of Fractional Order Viscoelastic Rods. Abstract and Applied Analysis, 2011, 2011, 1-32.	0.7	29
60	Waves in fractional Zener type viscoelastic media. Journal of Mathematical Analysis and Applications, 2010, 365, 259-268.	1.0	35
61	Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 1893-1917.	2.1	70
62	Time distributed-order diffusion-wave equation. I. Volterra-type equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 1869-1891.	2.1	71
63	A diffusion wave equation with two fractional derivatives of different order. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 5319-5333.	2.1	84