Carmen Escolano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6758455/publications.pdf

Version: 2024-02-01

279798 302126 1,752 76 23 39 citations h-index g-index papers 97 97 97 1655 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Insights into the Pharmacokinetics and In Vitro Cell-Based Studies of the Imidazoline I2 Receptor Ligand B06. International Journal of Molecular Sciences, 2022, 23, 5408.	4.1	3
2	An Imidazoline 2 Receptor Ligand Relaxes Mouse Aorta via Off-Target Mechanisms Resistant to Aging. Frontiers in Pharmacology, 2022, 13, .	3.5	3
3	A New Family of Subnanomolar inhibitors of Soluble Epoxide Hydrolase. FASEB Journal, 2022, 36, .	0.5	O
4	Heterocycle-Based Multicomponent Reactions in Drug Discovery: From Hit Finding to Rational Design. Biomedicines, 2022, 10, 1488.	3.2	4
5	I2 imidazoline receptor modulation protects aged SAMP8 mice against cognitive decline by suppressing the calcineurin pathway. GeroScience, 2021, 43, 965-983.	4.6	11
6	Synthesis, Characterization and HPLC Analysis of the (1S,2S,5R)-Diastereomer and the Enantiomer of the Clinical Candidate AR-15512. Molecules, 2021, 26, 906.	3.8	3
7	A bicyclic α‑iminophosphonate improves cognitive decline in 5xFAD murine model of neurodegeneration. FASEB Journal, 2021, 35, .	0.5	O
8	Diseaseâ€modifying treatment with I ₂ imidazoline receptor ligand LSL60101 in an Alzheimer's disease mouse model: a comparative study with donepezil. British Journal of Pharmacology, 2021, 178, 3017-3033.	5.4	16
9	Microarray Analysis Revealed Inflammatory Transcriptomic Changes after LSL60101 Treatment in 5XFAD Mice Model. Genes, 2021, 12, 1315.	2.4	1
10	Benzofuranyl-2-imidazoles as imidazoline I2 receptor ligands for Alzheimer's disease. European Journal of Medicinal Chemistry, 2021, 222, 113540.	5.5	15
11	PEPCK-M recoups tumor cell anabolic potential in a PKC-ζ-dependent manner. Cancer & Metabolism, 2021, 9, 1.	5.0	20
12	Discovery of Novel BRD4 Ligand Scaffolds by Automated Navigation of the Fragment Chemical Space. Journal of Medicinal Chemistry, 2021, 64, 17887-17900.	6.4	6
13	Pharmacology and preclinical validation of a novel anticancer compound targeting PEPCK-M. Biomedicine and Pharmacotherapy, 2020, 121, 109601.	5. 6	9
14	Phosphoenolpyruvate from Glycolysis and PEPCK Regulate Cancer Cell Fate by Altering Cytosolic Ca2+. Cells, 2020, 9, 18.	4.1	23
15	Amelioration of BPSD-Like Phenotype and Cognitive Decline in SAMP8 Mice Model Accompanied by Molecular Changes after Treatment with I2-Imidazoline Receptor Ligand MCR5. Pharmaceutics, 2020, 12, 475.	4.5	11
16	Bicyclic α-Iminophosphonates as High Affinity Imidazoline I ₂ Receptor Ligands for Alzheimer's Disease. Journal of Medicinal Chemistry, 2020, 63, 3610-3633.	6.4	17
17	Dibenzylxanthines as PPEPCK-M Inhibitors for Cancer Therapy. Proceedings (mdpi), 2019, 22, 79.	0.2	O
18	Hydrophobic Waters in Bromodomains. Proceedings (mdpi), 2019, 22, 80.	0.2	0

#	Article	IF	CITATIONS
19	Biological Evaluation of a Mitochondrial Phosphoenolpyruvate Carboxykinase Inhibitor. Proceedings (mdpi), 2019, 22, 95.	0.2	O
20	(2-Imidazolin-4-yl)phosphonates: Green Chemistry and Biology Walk Together. Proceedings (mdpi), 2019, 22, 97.	0.2	0
21	Behavioral and Cognitive Improvement Induced by Novel Imidazoline I2 Receptor Ligands in Female SAMP8 Mice. Neurotherapeutics, 2019, 16, 416-431.	4.4	22
22	A New Family of Imidazoline I 2 Receptor Ligands Improves Behavior and Cognition in SAMP8 Mice. FASEB Journal, 2019, 33, 806.19.	0.5	0
23	Access to the enantiopure pyrrolobenzodiazepine (PBD) dilactam nucleus via self-disproportionation of enantiomers. Tetrahedron, 2018, 74, 867-871.	1.9	19
24	Novel Imidazoline I ₂ Receptor Ligands for Alzheimer's Disease. FASEB Journal, 2018, 32, 552.1.	0.5	0
25	Facile microwave-assisted synthesis of thioformamides from isocyanides and carbon disulfide. Tetrahedron Letters, 2017, 58, 2768-2770.	1.4	8
26	Neuroprotective Effects of a Structurally New Family of High Affinity Imidazoline I ₂ Receptor Ligands. ACS Chemical Neuroscience, 2017, 8, 737-742.	3.5	24
27	Heme-Regulated eIF2α Kinase Modulates Hepatic FGF21 and Is Activated by PPARβ/δ Deficiency. Diabetes, 2016, 65, 3185-3199.	0.6	31
28	Syntheses of Cinacalcet: An Enantiopure Active Pharmaceutical Ingredient (API). Synthesis, 2016, 48, 783-803.	2.3	19
29	Synthesis of biaryls via intramolecular free radical ipso-substitution reactions. Tetrahedron, 2015, 71, 6701-6719.	1.9	30
30	Easy access to (2-imidazolin-4-yl)phosphonates by a microwave assisted multicomponent reaction. Tetrahedron, 2015, 71, 2872-2881.	1.9	19
31	Direct reductive alkylation of amine hydrochlorides with aldehyde bisulfite adducts. Tetrahedron Letters, 2014, 55, 2548-2550.	1.4	4
32	First diastereoselective $[3+2]$ cycloaddition reaction of diethyl isocyanomethylphosphonate and maleimides. Organic and Biomolecular Chemistry, 2013, 11, 1640.	2.8	16
33	Triheptanoin Supplementation to Ketogenic Diet Curbs Cognitive Impairment in APP/PS1 Mice Used as a Model of Familial Alzheimer's Disease. Current Alzheimer Research, 2013, 10, 290-297.	1.4	44
34	Enantioselective, protecting group-free synthesis of 1S-ethyl-4-substituted quinolizidines. Organic and Biomolecular Chemistry, 2012, 10, 6866.	2.8	7
35	Synthesis of triheptanoin and formulation as a solid diet for rodents. European Journal of Lipid Science and Technology, 2012, 114, 889-895.	1.5	5
36	First asymmetric cascade reaction catalysed by chiral primary aminoalcohols. Organic and Biomolecular Chemistry, 2011, 9, 5079.	2.8	17

#	Article	IF	Citations
37	Highly stereoselective double (R)-phenylglycinol-induced cyclocondensation reactions of symmetric aryl bis(oxoacids). Organic and Biomolecular Chemistry, 2011, 9, 2175.	2.8	6
38	Stereocontrolled Generation of Benzo[<i>a</i>]―and Indolo[2,3â€ <i>a</i>]quinolizidines from (<i>S</i>)â€Tryptophanol and (<i>S</i>)â€(3,4â€Dimethoxyphenyl)alaninolâ€Derived Lactams. European Journal of Organic Chemistry, 2011, 2011, 3858-3863.	2.4	14
39	Cooperative Catalysis for the First Asymmetric Formal [3+2] Cycloaddition Reaction of Isocyanoacetates to α,βâ€Unsaturated Ketones. European Journal of Organic Chemistry, 2011, 2011, 3755-3760.	2.4	84
40	A practical procedure for the removal of the phenylethanol moiety from phenylglycinol-derived lactams. Tetrahedron: Asymmetry, 2010, 21, 2542-2549.	1.8	12
41	Enantioselective Formal Synthesis of (+)-Dihydrocorynantheine and (â°')-Dihydrocorynantheol. Journal of Organic Chemistry, 2009, 74, 1205-1211.	3.2	43
42	Structure-Directed Reversion in the ¨i∈-Facial Stereoselective Alkylation of Chiral Bicyclic Lactams. Journal of Organic Chemistry, 2008, 73, 7756-7763.	3.2	13
43	Nitrile Ylides: Generation, Properties and Synthetic Applications. Current Organic Chemistry, 2007, 11, 741-772.	1.6	17
44	Straightforward Methodology for the Enantioselective Synthesis of Benzo[a]- and Indolo[2,3-a]quinolizidines. Journal of Organic Chemistry, 2007, 72, 5193-5201.	3.2	58
45	Enantioselective Synthesis of 3,3-Disubstituted Piperidine Derivatives by Enolate Dialkylation of Phenylglycinol-Derived Oxazolopiperidone Lactams. Journal of Organic Chemistry, 2007, 72, 4431-4439.	3.2	72
46	Alkylation of Phenylglycinol-Derived Oxazolopiperidone Lactams. Enantioselective Synthesis of \hat{l}^2 -Substituted Piperidines. Journal of Organic Chemistry, 2006, 71, 3804-3815.	3.2	33
47	On the Origin of the Stereoselectivity in the Alkylation of Oxazolopiperidone Enolates. Journal of the American Chemical Society, 2006, 128, 6581-6588.	13.7	17
48	Stereoselective \hat{l}_{\pm} -amidoalkylation of phenylglycinol-derived lactams. Synthesis of enantiopure 5,6-disubstituted 2-piperidones. Tetrahedron: Asymmetry, 2006, 17, 1581-1588.	1.8	26
49	Chiral Oxazolopiperidone Lactams: Versatile Intermediates for the Enantioselective Synthesis of Piperidine-Containing Natural Products. Chemistry - A European Journal, 2006, 12, 8198-8207.	3.3	186
50	Stephacidin B, The Avrainvillamide Dimer: A Formidable Synthetic Challenge. Angewandte Chemie - International Edition, 2005, 44, 7670-7673.	13.8	26
51	Alkylation of phenylglycinol-derived bicyclic lactams. Enantioselective synthesis of 3-alkylpiperidines. Arkivoc, 2005, 2005, 115-123.	0.5	7
52	Conjugate Additions to Phenylglycinol-Derived Unsaturated $\hat{\Gamma}$ -Lactams. Enantioselective Synthesis of Uleine Alkaloids. Journal of Organic Chemistry, 2004, 69, 8681-8693.	3.2	53
53	Complete1H and 13C NMR chemical shift assignment of N1- and N3-alkylnitrohistidines and of 1,4,6,7-tetrahydroimidazo [4,5-b] pyridines. Magnetic Resonance in Chemistry, 2003, 41, 219-222.	1.9	O
54	Reaction of Indolin-2-ones with Cerium(IV) Ammonium Nitrate ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
55	Stereoselective α-Amidoalkylation Reactions of Phenylglycinol-Derived Bicyclic Lactams ChemInform, 2003, 34, no.	0.0	O
56	Enantioselective Synthesis of cis- and trans-3,5-Disubstituted Piperidines. Synthesis of 20S- and 20R-Dihydrocleavamine ChemInform, 2003, 34, no.	0.0	0
57	On the configuration of (3R,8aS)-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine. Tetrahedron: Asymmetry, 2003, 14, 293-295.	1.8	11
58	Stereoselective \hat{l} ±-amidoalkylation reactions of phenylglycinol-derived bicyclic lactams. Tetrahedron: Asymmetry, 2003, 14, 1679-1683.	1.8	24
59	Asymmetric synthesis of tetracyclic substructures of Strychnos indole alkaloids. Tetrahedron: Asymmetry, 2003, 14, 1691-1699.	1.8	6
60	Enantioselective Synthesis of Piperidine, Indolizidine, and Quinolizidine Alkaloids from a Phenylglycinol-Derived Î'-Lactam. Journal of Organic Chemistry, 2003, 68, 1919-1928.	3.2	147
61	Enantioselective Synthesis ofcis- andtrans-3,5-Disubstituted Piperidines. Synthesis of 20S- and 20R-Dihydrocleavamine. Organic Letters, 2003, 5, 3139-3142.	4.6	27
62	Dynamic Kinetic Resolution of Racemic \hat{l}^3 -Aryl- \hat{l} -oxoesters. Enantioselective Synthesis of 3-Arylpiperidines. Journal of Organic Chemistry, 2002, 67, 5343-5351.	3.2	70
63	Decarbonylative Radical Cyclization of α-Amino Selenoesters upon Electrophilic Alkenes. A General Method for the 6-Azabicyclo[3.2.1]octane Synthesis. Journal of Organic Chemistry, 2002, 67, 2323-2328.	3.2	51
64	Aryl radical cyclisation onto pyrroles. Tetrahedron, 2002, 58, 1453-1464.	1.9	50
65	Reaction of indolin-2-ones with cerium(IV) ammonium nitrate. Tetrahedron, 2002, 58, 9541-9545.	1.9	8
66	Synthesis and structural study of 6-amino-1,4,6,7-tetrahydroimidazo[4,5-b]pyridin-5-ones. Tetrahedron Letters, 2002, 43, 4343-4346.	1.4	5
67	13C NMR chemical shift assignments for substituted 2-azabicyclo[3.3.1]nonan-3-ones. Magnetic Resonance in Chemistry, 2000, 38, 891-893.	1.9	4
68	Aryl radical cyclisation onto pyrroles: a divergent synthesis of spiropyrrolidinyloxindoles and pyrroloquinolines. Tetrahedron Letters, 2000, 41, 8951-8955.	1.4	67
69	Synthesis of enantiopure 2-azabicyclo[3.3.1]nonanes by a radical ring closure. Tetrahedron: Asymmetry, 1999, 10, 2399-2410.	1.8	15
70	Radical promoted cyclisations of trichloroacetamides with silyl enol ethers and enol acetates: the role of the hydride reagent [tris(trimethylsilyl)silane vs. tributylstannane]. Journal of the Chemical Society Perkin Transactions 1, 1999, , 1157-1162.	0.9	25
71	A Radical Route to Morphans. Synthesis and Spectroscopic Data of the 2-Azabicyclo[3.3.1]nonane. Heterocycles, 1999, 50, 731.	0.7	10
72	First Total Synthesis of (\hat{A}_{\pm}) -Melinonine-E and (\hat{A}_{\pm}) -Strychnoxanthine Using a Radical Cyclization Process as the Core Ring-Forming Step. Journal of Organic Chemistry, 1998, 63, 968-976.	3.2	58

#	Article	IF	CITATION
73	Synthesis of 2-azabicyclo[3.3.1]nonanes by means of (carbamoyl)dichloromethyl radical cyclization. Tetrahedron, 1997, 53, 1391-1402.	1.9	43
74	Cyclization of 1-(carbamoyl)dichloromethyl radicals upon activated alkenes. A new entry to 2-azabicyclo[3.3.1]nonanes. Tetrahedron Letters, 1997, 38, 6901-6904.	1.4	12
75	First total synthesis of $(\hat{A}\pm)$ -melinonine-E. Journal of the Chemical Society Chemical Communications, 1995, .	2.0	13
76	Synthesis and evaluation of tacrine-related compounds for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 1994, 29, 205-221.	5.5	28