
Ido Tavor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6758264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Task-free MRI predicts individual differences in brain activity during task performance. Science, 2016, 352, 216-220.	6.0	648
2	Sex beyond the genitalia: The human brain mosaic. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15468-15473.	3.3	493
3	Learning in the Fast Lane: New Insights into Neuroplasticity. Neuron, 2012, 73, 1195-1203.	3.8	422
4	Short-Term Learning Induces White Matter Plasticity in the Fornix. Journal of Neuroscience, 2013, 33, 12844-12850.	1.7	173
5	In vivo correlation between axon diameter and conduction velocity in the human brain. Brain Structure and Function, 2015, 220, 1777-1788.	1.2	133
6	The CONNECT project: Combining macro- and micro-structure. NeuroImage, 2013, 80, 273-282.	2.1	121
7	Separate parts of occipito-temporal white matter fibers are associated with recognition of faces and places. NeuroImage, 2014, 86, 123-130.	2.1	76
8	Micro-structural assessment of short term plasticity dynamics. NeuroImage, 2013, 81, 1-7.	2.1	62
9	Shortâ€ŧerm plasticity following motor sequence learning revealed by diffusion magnetic resonance imaging. Human Brain Mapping, 2020, 41, 442-452.	1.9	37
10	Traumatic Brain Injury Severity in a Network Perspective: A Diffusion MRI Based Connectome Study. Scientific Reports, 2020, 10, 9121.	1.6	32
11	Brain volumetric changes in the general population following the COVID-19 outbreak and lockdown. NeuroImage, 2021, 239, 118311.	2.1	29
12	Act natural: Functional connectivity from naturalistic stimuli fMRI outperforms resting-state in predicting brain activity. NeuroImage, 2022, 258, 119359.	2.1	14
13	Brain structure changes induced by attention bias modification training. Biological Psychology, 2019, 146, 107736.	1.1	13
14	Response to the comments on the paper by Horowitz et al. (2014). Brain Structure and Function, 2015, 220, 1791-1792.	1.2	11
15	Widespread cortical dyslamination in epilepsy patients with malformations of cortical development. Neuroradiology, 2021, 63, 225-234.	1.1	11
16	Predicting individual variability in taskâ€evoked brain activity in schizophrenia. Human Brain Mapping, 2021, 42, 3983-3992.	1.9	11
17	Alterations in Network Connectivity after Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2020, 37, 2169-2179.	1.7	11
18	Selective atrophy of the connected deepest cortical layers following small subcortical infarct. Neurology, 2019, 92, e567-e575.	1.5	10

Ido Tavor

#	Article	IF	CITATIONS
19	Neuromodulation of Visual Cortex Reduces the Intensity of Intrusive Memories. Cerebral Cortex, 2022, 32, 408-417.	1.6	9
20	Predicting individual traits from unperformed tasks. NeuroImage, 2022, 249, 118920.	2.1	8
21	The Diffusion Tensor Imaging Properties of the Normal Testicles at 3 Tesla Magnetic Resonance Imaging. Academic Radiology, 2019, 26, 1010-1016.	1.3	3
22	Tissue Probability Based Registration of Diffusionâ€Weighted Magnetic Resonance Imaging. Journal of Magnetic Resonance Imaging, 2021, 54, 1066-1076.	1.9	1
23	"Does attention bias modification induce structural brain changes? A commentary on Abend et al. (2019)―– Response. Biological Psychology, 2020, 152, 107865.	1.1	0
24	Novel mechanisms of rapid reactivation-induced perceptual learning. Journal of Vision, 2020, 20, 518.	0.1	0
25	Neuromodulation of visual cortex reduces the intensity of intrusive visual emotional memories. Journal of Vision, 2020, 20, 360.	0.1	0
26	Similar functional networks predict performance in both perceptual and value-based decision tasks. Cerebral Cortex, 2023, 33, 2669-2681.	1.6	0