Yu-Xiang Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6757826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods. Thin Solid Films, 2004, 455-456, 438-442.	1.8	185
2	Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays. Scientific Reports, 2015, 5, 7810.	3.3	126
3	Optical properties of cubic Ti3N4, Zr3N4, and Hf3N4. Applied Physics Letters, 2006, 89, 151908.	3.3	103
4	Effects of Al Doping on the Properties of ZnO Thin Films Deposited by Atomic Layer Deposition. Nanoscale Research Letters, 2016, 11, 407.	5.7	95
5	The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition. Nanoscale Research Letters, 2015, 10, 46.	5.7	71
6	High solar absorption of a multilayered thin film structure. Optics Express, 2007, 15, 1907.	3.4	62
7	Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry. Applied Surface Science, 2017, 421, 884-890.	6.1	48
8	Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability. Optics Express, 2012, 20, 28953.	3.4	45
9	Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix. Applied Physics Letters, 2009, 95, .	3.3	38
10	Evolution of short- and medium-range order in the melt-quenching amorphization of Ge ₂ Sb ₂ Te ₅ . Journal of Materials Chemistry C, 2018, 6, 5001-5011.	5.5	38
11	Optical transition properties of $\hat{I}^2 \hat{a} \in FeSi2film$. Applied Physics Letters, 1994, 65, 3105-3107.	3.3	37
12	The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry. Physical Chemistry Chemical Physics, 2016, 18, 3316-3321.	2.8	33
13	Structural signature and transition dynamics of Sb ₂ Te ₃ melt upon fast cooling. Physical Chemistry Chemical Physics, 2018, 20, 11768-11775.	2.8	33
14	Fourier Transform Infrared Spectroscopy of "Bisphenol A― Journal of Spectroscopy, 2016, 2016, 1-5.	1.3	32
15	Thickness-dependence of optical constants for Ta2O5 ultrathin films. Applied Physics A: Materials Science and Processing, 2012, 108, 975-979.	2.3	29
16	Optical properties of epitaxial BiFeO3 thin film grown on SrRuO3-buffered SrTiO3 substrate. Nanoscale Research Letters, 2014, 9, 188.	5.7	29
17	Ellipsometric study on optical properties of hydrogen plasma-treated aluminum-doped ZnO thin film. Vacuum, 2019, 163, 69-74.	3.5	28
18	Densely folded spectral images of the CCD spectrometer working in the full 200-1000nm wavelength range with high resolution. Optics Express, 2005, 13, 10049.	3.4	26

#	Article	IF	CITATIONS
19	Local structure order in Pd78Cu6Si16 liquid. Scientific Reports, 2015, 5, 8277.	3.3	26
20	Effective method to study the thickness-dependent dielectric functions of nanometal thin film. Optics Letters, 2016, 41, 4907.	3.3	26
21	Raman spectroscopy of â€~Bisphenol A'. Journal of Molecular Structure, 2016, 1108, 649-653.	3.6	26
22	Optical Properties of Al-Doped ZnO Films in the Infrared Region and Their Absorption Applications. Nanoscale Research Letters, 2018, 13, 149.	5.7	26
23	Influence of hydration water on CH_3NH_3PbI_3 perovskite films prepared through one-step procedure. Optics Express, 2016, 24, A1431.	3.4	25
24	Approach to fabricating high-performance cooler with near-ideal emissive spectrum for above-ambient air temperature radiative cooling. Solar Energy Materials and Solar Cells, 2019, 200, 110013.	6.2	25
25	Study of the Kerr effect of CoxAg100â^'x granular films. Journal of Applied Physics, 1999, 85, 5121-5123.	2.5	24
26	Multilayered metal-dielectric film structure for highly efficient solar selective absorption. Materials Research Express, 2018, 5, 066428.	1.6	24
27	Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films. Journal Physics D: Applied Physics, 2010, 43, 445302.	2.8	23
28	Temperature-Dependent Optical Properties of Titanium Oxide Thin Films Studied by Spectroscopic Ellipsometry. Applied Physics Express, 2013, 6, 121101.	2.4	23
29	High efficiency of photon-to-heat conversion with a 6-layered metal/dielectric film structure in the 250-1200 nm wavelength region. Optics Express, 2014, 22, A1843.	3.4	23
30	Electronic and optical properties of hydrogen-terminated biphenylene nanoribbons: a first-principles study. Physical Chemistry Chemical Physics, 2021, 24, 357-365.	2.8	23
31	Phase change characteristics of aluminum doped Ge_2Sb_2Te_5 films prepared by magnetron sputtering. Optics Express, 2007, 15, 10584.	3.4	22
32	Thickness dependent optical properties of titanium oxide thin films. Applied Physics A: Materials Science and Processing, 2013, 113, 557-562.	2.3	21
33	New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms. Review of Scientific Instruments, 2000, 71, 2677-2683.	1.3	20
34	Tunable broadband near-infrared absorber based on ultrathin phase-change material. Optics Communications, 2017, 403, 166-169.	2.1	20
35	Effects of interlayer coupling on the excitons and electronic structures of WS2/hBN/MoS2 van der Waals heterostructures. Nano Research, 2022, 15, 2674-2681.	10.4	20
36	Application of image spectrometer to in situ infrared broadband optical monitoring for thin film deposition. Optics Express, 2011, 19, 12969.	3.4	19

#	Article	IF	CITATIONS
37	Effects of dielectric screening on the excitonic and critical points properties of WS ₂ /MoS ₂ heterostructures. Nanoscale, 2020, 12, 23732-23739.	5.6	19
38	Effects of Oxygen Impurities on Glass-Formation Ability in Zr ₂ Cu Alloy. Journal of Physical Chemistry B, 2016, 120, 9223-9229.	2.6	18
39	Dielectric functions and critical points of crystalline WS ₂ ultrathin films with tunable thickness. Physical Chemistry Chemical Physics, 2017, 19, 12022-12031.	2.8	18
40	High efficient and wide-angle solar absorption with a multilayered metal-dielectric film structure. Vacuum, 2017, 146, 194-199.	3.5	18
41	Bergman-type medium-range order in rapidly quenched Ag0.74Ge0.26 eutectic alloy studied by ab initio molecular dynamics simulation. Acta Materialia, 2014, 80, 498-504.	7.9	17
42	Numerical simulations of multilevel impurity photovoltaic effect in the sulfur doped crystalline silicon. Renewable Energy, 2015, 77, 442-446.	8.9	17
43	Concentration and size dependence of optical properties of Ag:Bi2O3 composite films by using the co-sputtering method. Thin Solid Films, 2004, 455-456, 605-608.	1.8	14
44	Evolution of optical properties of tin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation. Applied Physics Letters, 2014, 104, 121907.	3.3	14
45	Thickness-Dependent Optical Constants and Annealed Phase Transitions of Ultrathin ZnO Films. Journal of Physical Chemistry C, 2016, 120, 22532-22538.	3.1	14
46	Structure-Dependent Optical Properties of Self-Organized Bi ₂ Se ₃ Nanostructures: From Nanocrystals to Nanoflakes. ACS Applied Materials & Interfaces, 2017, 9, 29295-29301.	8.0	14
47	Tunable optical properties of co-sputtered Ti-SiO_2 nanocomposite thin films. Optical Materials Express, 2017, 7, 2387.	3.0	13
48	Ellipsometric study on temperature dependent optical properties of topological bismuth film. Applied Surface Science, 2017, 421, 899-904.	6.1	11
49	Enhancement in photoelectric performance of flexible perovskite solar cells by thermal nanoimprint pillar-like nanostructures. Materials Letters, 2019, 248, 16-19.	2.6	11
50	Experimental observation of light refraction going from negative to positive in the visible region at the pure air/Au interface. Physical Review B, 2008, 77, .	3.2	10
51	Ellipsometric Study on Size-Dependent Melting Point of Nanometer-Sized Indium Particles. Journal of Physical Chemistry C, 2016, 120, 10686-10690.	3.1	10
52	Ta Doping Effect on Structural and Optical Properties of InTe Thin Films. Nanomaterials, 2020, 10, 1887.	4.1	10
53	Study of the thickness effect on the dielectric functions by utilizing a wedge-shaped Ti film sample with continuously varied thickness. Applied Physics A: Materials Science and Processing, 2015, 120, 875-879.	2.3	9
54	Si-centered capped trigonal prism ordering in liquid Pd ₈₂ Si ₁₈ alloy study by first-principles calculations. RSC Advances, 2017, 7, 18093-18098.	3.6	9

#	Article	IF	CITATIONS
55	Influence of interface layer on optical properties of sub-20 nm-thick TiO ₂ films. Journal Physics D: Applied Physics, 2018, 51, 085301.	2.8	9
56	Study of the Optical Properties of Bi3.15Nd0.85Ti3O12 Ferroelectric Thin Films. Journal of the Korean Physical Society, 2008, 53, 2299-2302.	0.7	9
57	Study of a high-resolution infrared spectrometer by using an integrated multigrating structure. Review of Scientific Instruments, 2005, 76, 083118.	1.3	8
58	Negative refraction at the pure Ag/air interface observed in the visible Drude region. Applied Physics Letters, 2008, 93, 071910.	3.3	8
59	Optical constants of e-beam evaporated and annealed Nb ₂ O ₅ thin films with varying thickness. Journal Physics D: Applied Physics, 2016, 49, 265304.	2.8	8
60	Thickness-dependent free-electron relaxation time of Au thin films in near-infrared region. Journal of Nanophotonics, 2016, 10, 033009.	1.0	8
61	Path-folded infrared spectrometer consisting of 10 sub-gratings and a two-dimensional InGaAs detector. Optics Express, 2009, 17, 14956.	3.4	7
62	High photon-to-heat conversion efficiency in the wavelength region of 250–1200 nm based on a thermoelectric Bi2Te3 film structure. Scientific Reports, 2017, 7, 44614.	3.3	7
63	Enhancement of solar absorption by a surface-roughened metal–dielectric film structure. Japanese Journal of Applied Physics, 2017, 56, 112301.	1.5	7
64	A coma-free super-high resolution optical spectrometer using 44 high dispersion sub-gratings. Scientific Reports, 2021, 11, 1093.	3.3	7
65	Design of non-polarizing cut-off filters based on dielectric-metal-dielectric stacks. Optics Express, 2013, 21, 19163.	3.4	6
66	Optical properties of high photoluminescence silicon nanocrystals embedded in SiO2 matrices obtained by annealing hydrogen silsesquioxane. Optical Materials, 2018, 84, 874-878.	3.6	6
67	The Design of Near-Perfect Spectrum-Selective Mirror Based on Photonic Structures for Passive Cooling of Silicon Solar Cells. Nanomaterials, 2020, 10, 2483.	4.1	6
68	Neural network potential for Zr–Rh system by machine learning. Journal of Physics Condensed Matter, 2022, 34, 075402.	1.8	6
69	The magneto-optical properties of Co–Ag granular films. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 210-212.	2.3	5
70	Ultrahigh-resolution spectrometer based on 19 integrated gratings. Scientific Reports, 2019, 9, 10211.	3.3	5
71	Luminescence mechanism in hydrogenated silicon quantum dots with a single oxygen ligand. Nanoscale Advances, 2021, 3, 2245-2251.	4.6	5
72	Enhancement in photoelectric performance of dye-sensitized solar cells with inverted pyramid structures based on nanoimprint lithography. AIP Advances, 2021, 11, .	1.3	5

#	Article	IF	CITATIONS
73	Comparison Study of the Band-gap Structure of a 1D-Photonic Crystal by Using TMM and FDTD Analyses. Journal of the Korean Physical Society, 2011, 58, 1014-1020.	0.7	5
74	Giant Faraday magneto-optical effects induced by Mn2+ in Zn1â^'xMnxSe. Journal of Applied Physics, 1997, 81, 5154-5156.	2.5	4
75	Study of the new ellipsometric measurement method using integrated analyzer in parallel mode. Optics Express, 2009, 17, 8641.	3.4	4
76	Structural Characterization, Optical Properties, and Phase Transitions of In _{1–<i>x</i>} Sn _{<i>x</i>} Alloy Thin Films. Journal of Physical Chemistry C, 2016, 120, 7822-7828.	3.1	4
77	Effect of body defect on mechanical behaviors of Cu nanowire under tension: a molecular dynamics investigation. Journal of Materials Science, 2017, 52, 13237-13246.	3.7	4
78	Temperature dependence of structural, dynamical, and electronic properties of amorphous Bi ₂ Te ₃ : an ab initio study. New Journal of Physics, 2019, 21, 093062.	2.9	4
79	Characterization on Percolation of Nanostructured Silver Films by the Topological Properties of Spectroscopic Ellipsometric Parameter Trajectories. Journal of Physical Chemistry C, 2020, 124, 28306-28312.	3.1	4
80	STUDY ON THE PROPERTIES OF LIGHT PROPAGATION AT THE METAL INTERFACE. Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2009, 28, 31-34.	0.2	4
81	Optical Properties and Local Structure Evolution during Crystallization of Ga16Sb84 Alloy. Scientific Reports, 2018, 8, 9605.	3.3	3
82	A High-Performance Spectrometer with Two Spectral Channels Sharing the Same BSI-CMOS Detector. Scientific Reports, 2018, 8, 12660.	3.3	3
83	Effect of Deposition Power on the Thermoelectric Performance of Bismuth Telluride Prepared by RF Sputtering. Crystals, 2020, 10, 552.	2.2	3
84	Microstructure-Induced Anisotropic Optical Properties of YF3 Columnar Thin Films Prepared by Glancing Angle Deposition. Nanomaterials, 2020, 10, 2413.	4.1	3
85	Characteristics of high energy N+-implanted damage in GaSb. Solid State Communications, 1995, 96, 593-596.	1.9	2
86	Ferromagnetic resonance studies of noble metals based sandwiches. Journal of Applied Physics, 1996, 79, 4949.	2.5	2
87	A study of optical characteristics of damage in oxygen-implanted 6H-SiC. Journal of Materials Science Letters, 1999, 18, 979-982.	O.5	2
88	The annealing effect on the magneto-optical properties of CoxAg100â^'x granular films. Physica B: Condensed Matter, 2000, 279, 109-112.	2.7	2
89	Study of spectrum-splitting solar photovoltaic system. Proceedings of SPIE, 2011, , .	0.8	2
90	Study of Positive and Negative Refraction of Visible Light at the Cu/Air Interface. Journal of the Physical Society of Japan, 2011, 80, 084715.	1.6	2

#	Article	IF	CITATIONS
91	Study of the crystal structure, band gap and dispersion evolution in titanium oxide thin films. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2374-2378.	1.8	2
92	Dynamics and Diffusion Mechanism of Low-Density Liquid Silicon. Journal of Physical Chemistry B, 2015, 119, 14945-14951.	2.6	2
93	High-accuracy and rapid azimuth calibration for polarizing elements in ellipsometry by differential spectral analysis on the ellipse azimuth. Applied Optics, 2021, 60, 1609.	1.8	2
94	Method for Analyzing the Measurement Error with Respect to Azimuth and Incident Angle for the Rotating Polarizer Analyzer Ellipsometer. Crystals, 2021, 11, 349.	2.2	2
95	Optical Properties of Solar Absorber Materials and Structures. Topics in Applied Physics, 2021, , 1-165.	0.8	2
96	Study of the Correlation of Plasma Resonance and the Refractive Index to Dielectric Dispersion in the Complex Plane. Journal of the Optical Society of Korea, 2013, 17, 27-32.	0.6	2
97	Thickness-dependent optical properties of yttrium fluoride ultrathin films in the visible band. Optical Materials Express, 2020, 10, 3306.	3.0	2
98	A new direct band gap Si–Ge allotrope with advanced electronic and optical properties. Physical Chemistry Chemical Physics, 2022, 24, 16310-16316.	2.8	2
99	Magneto-optic properties in multilayers Fe—Si/Cr and Co—Nb/Pd. Physica Status Solidi A, 1995, 149, 733-739.	1.7	1
100	The Magnetic Coupling, Optical and Magneto-Optical Properties of Oscillation Observed in Sputtered Co–Al/Cu Multilayers. Physica Status Solidi A, 1998, 167, 223-232.	1.7	1
101	Structural, magnetic and magneto-optical properties of Co1â^'xNixPt3 alloy films with perpendicular anisotropy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 271, 115-120.	2.1	1
102	DC-sputtered Pt3(Co1â^'xNix) (x=0.4) alloy films at different ultra-high Ar pressure with perpendicular anisotropy. Thin Solid Films, 2001, 382, 235-239.	1.8	1
103	Spatial effect on the interference of light propagated in a film structure. Applied Optics, 2007, 46, 7049.	2.1	1
104	Lateral shift effect on the spatial interference of light wave propagating in the single-layered dielectric film. Optics Express, 2010, 18, 10524.	3.4	1
105	Approach to Error Analysis and Reduction for Rotating-Polarizer-Analyzer Ellipsometer. Journal of the Physical Society of Japan, 2012, 81, 124003.	1.6	1
106	Double layers of H2 adsorption on an AlN sheet induced by electric field. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	1
107	Contribution of thickness dependent void fraction and TiSixOy interlayer to the optical properties of amorphous TiO2 thin films. Thin Solid Films, 2013, 548, 275-279.	1.8	1
108	Temperature dependent optical properties of Si nanocrystals embedded in SiO2 matrix. Applied Physics A: Materials Science and Processing, 2014, 114, 423-427.	2.3	1

#	Article	IF	CITATIONS
109	Strong optical absorption of a metallic film to induce a lensing effect in the visible region. Scientific Reports, 2019, 9, 12434.	3.3	1
110	High-Performance Ellipsometry With 2-D Expanded Channels for Spectroscopy and Polarization Analysis. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	4.7	1
111	Optical properties, band structures, and phase transition of UO2+x epitaxial films deposited by polymer-assisted deposition. AIP Advances, 2021, 11, 115107.	1.3	1
112	Polarization of Pd Atoms and Interlayer Coupling in Fe—Si/Pd Multilayers. Physica Status Solidi A, 1996, 154, 735-742.	1.7	0
113	Analysis of implantation-induced damage and amorphization of GaSb. Physica Status Solidi A, 1996, 157, 57-63.	1.7	0
114	<title>Giant magnetoresistance effect in granular-type Co-Ag/Ag multilayers</title> . , 1998, 3175, 460.		0
115	Study of optical properties of metallic Au:SiO2 and Ni:SiO2 films. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 587-589.	2.3	0
116	Magnetic and magneto-optical properties of DC-sputtered (CoPt 3) 1â^'x Ni x (x =0–0.5) alloy films. Thin Solid Films, 2000, 368, 138-141.	1.8	0
117	The Joule loss profiles of different structure at two wavelengths in a double layered magneto-optical disk. Journal of Magnetism and Magnetic Materials, 2004, 269, 197-202.	2.3	0
118	Fabrication of IR Reflectors by Porous Silicon Technique. , 2006, , .		0
119	Ellipsometry and Its Applications in Stoichiometry. , 0, , .		0
120	A virtual optical encryption system based on polarization optics. Journal of the Korean Physical Society, 2012, 60, 1292-1296.	0.7	0
121	Structural characterization and optical properties of Sol-gel-derived polycrystalline Pb(Zr0.35Ti0.65)O3 thin films. Journal of the Korean Physical Society, 2013, 63, 53-57.	0.7	0
122	3. Study of the characteristics of light propagating at the metal-based interface. , 2015, , 107-138.		0
123	An optical monitoring method for depositing dielectric layers of arbitrary thickness using reciprocal of transmittance. Optics Express, 2015, 23, 4703.	3.4	0
124	Study on Melting and Deflagration of Nanometer-Sized Indium Particle Thin Films by Temperature-Dependent Ellipsometry. Journal of Physical Chemistry C, 2020, 124, 13976-13981.	3.1	0
125	Advanced Spectrometer with Two Spectral Channels Sharing the Same BSI-CMOS Detector. , 2019, , .		0