
Denis Pelisson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6757031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cerebellar signals drive motor adjustments and visual perceptual changes during forward and backward adaptation of reactive saccades. Cerebral Cortex, 2022, 32, 3896-3916.	1.6	4
2	The posterior parietal cortex processes visuo-spatial and extra-retinal information for saccadic remapping: A case study. Cortex, 2021, 139, 134-151.	1.1	5
3	Peer Presence Effect on Numerosity and Phonological Comparisons in 4th Graders: When Working with a SchoolMate Makes Children More Adult-like. Biology, 2021, 10, 902.	1.3	2
4	Reactive saccade adaptation boosts orienting of visuospatial attention. Scientific Reports, 2020, 10, 13430.	1.6	3
5	Inducing oculomotor plasticity to disclose the functional link between voluntary saccades and endogenous attention deployed perifoveally. Scientific Reports, 2019, 9, 17770.	1.6	6
6	Saccadic Adaptation Boosts Ongoing Gamma Activity in a Subsequent Visuoattentional Task. Cerebral Cortex, 2019, 29, 3606-3617.	1.6	4
7	Peer Presence Effects on Eye Movements and Attentional Performance. Frontiers in Behavioral Neuroscience, 2019, 13, 280.	1.0	10
8	A cortical substrate for the long-term memory of saccadic eye movements calibration. NeuroImage, 2018, 179, 348-356.	2.1	5
9	Oculomotor Adaptation Elicited By Intra-Saccadic Visual Stimulation: Time-Course of Efficient Visual Target Perturbation. Frontiers in Human Neuroscience, 2016, 10, 91.	1.0	8
10	Adaptation of Saccadic Sequences with and without Remapping. Frontiers in Human Neuroscience, 2016, 10, 359.	1.0	3
11	Deployment of spatial attention without moving the eyes is boosted by oculomotor adaptation. Frontiers in Human Neuroscience, 2015, 9, 426.	1.0	8
12	Electrical stimulation of the superior colliculus induces non-topographically organized perturbation of reaching movements in cats. Frontiers in Systems Neuroscience, 2015, 9, 109.	1.2	5
13	Increasing Attentional Load Boosts Saccadic Adaptation. , 2015, 56, 6304.		8
14	Long-term sensorimotor and therapeutical effects of a mild regime of prism adaptation in spatial neglect. A double-blind RCT essay. Annals of Physical and Rehabilitation Medicine, 2015, 58, 40-53.	1.1	76
15	The Effects of Short-Lasting Anti-Saccade Training in Homonymous Hemianopia with and without Saccadic Adaptation. Frontiers in Behavioral Neuroscience, 2015, 9, 332.	1.0	9
16	Adaptation of scanning saccades co-occurs in different coordinate systems. Journal of Neurophysiology, 2014, 111, 2505-2515.	0.9	3
17	A Role for the Parietal Cortex in Sensorimotor Adaptation of Saccades. Cerebral Cortex, 2014, 24, 304-314.	1.6	30
18	Automatic online control of motor adjustments in reaching and grasping. Neuropsychologia, 2014, 55, 25-40.	0.7	88

#	Article	IF	CITATIONS
19	Saccades and Eye–Head Coordination in Ataxia with Oculomotor Apraxia Type 2. Cerebellum, 2013, 12, 557-567.	1.4	19
20	Plastic Modification of Anti-Saccades: Adaptation of Saccadic Eye Movements Aimed at a Virtual Target. Journal of Neuroscience, 2013, 33, 13489-13497.	1.7	8
21	Effects of structural and functional cerebellar lesions on sensorimotor adaptation of saccades. Experimental Brain Research, 2013, 231, 1-11.	0.7	25
22	MRI findings in AOA2: Cerebellar atrophy and abnormal iron detection in dentate nucleus. NeuroImage: Clinical, 2013, 2, 542-548.	1.4	10
23	Persistent visual impairment in multiple sclerosis: prevalence, mechanisms and resulting disability. Multiple Sclerosis Journal, 2013, 19, 1618-1626.	1.4	79
24	An Elderly Woman With Difficulty Reading and Abnormal Eye Movements. Journal of Neuro-Ophthalmology, 2013, 33, 296-301.	0.4	3
25	Brain Processing of Visual Information during Fast Eye Movements Maintains Motor Performance. PLoS ONE, 2013, 8, e54641.	1.1	11
26	Functional activation of the cerebral cortex related to sensorimotor adaptation of reactive and voluntary saccades. Neurolmage, 2012, 61, 1100-1112.	2.1	45
27	Consensus Paper: Roles of the Cerebellum in Motor Control—The Diversity of Ideas on Cerebellar Involvement in Movement. Cerebellum, 2012, 11, 457-487.	1.4	644
28	Transcranial magnetic stimulation and motor plasticity in human lateral cerebellum: Dual effect on saccadic adaptation. Human Brain Mapping, 2012, 33, 1512-1525.	1.9	44
29	Sensory Processing of Motor Inaccuracy Depends on Previously Performed Movement and on Subsequent Motor Corrections: A Study of the Saccadic System. PLoS ONE, 2011, 6, e17329.	1.1	19
30	Persistent ocular motor manifestations and related visual consequences in multiple sclerosis. Annals of the New York Academy of Sciences, 2011, 1233, 327-334.	1.8	28
31	Integration of visual information for saccade production. Human Movement Science, 2011, 30, 1009-1021.	0.6	7
32	Unusual Monocular Pendular Nystagmus in Multiple Sclerosis. Journal of Neuro-Ophthalmology, 2011, 31, 38-41.	0.4	9
33	Impaired saccadic adaptation in DYT11 dystonia. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1103-1106.	0.9	40
34	Sensorimotor adaptation of saccadic eye movements. Neuroscience and Biobehavioral Reviews, 2010, 34, 1103-1120.	2.9	176
35	Adaptation of reactive and voluntary saccades: different patterns of adaptation revealed in the antisaccade task. Journal of Physiology, 2009, 587, 127-138.	1.3	42
36	Behavioral Evidence of Separate Adaptation Mechanisms Controlling Saccade Amplitude Lengthening and Shortening. Journal of Neurophysiology, 2009, 101, 1550-1559.	0.9	59

#	Article	IF	CITATIONS
37	Separate Neural Substrates in the Human Cerebellum for Sensory-motor Adaptation of Reactive and of Scanning Voluntary Saccades. Cerebellum, 2008, 7, 595-601.	1.4	54
38	Saccade control and eye–hand coordination in optic ataxia. Neuropsychologia, 2008, 46, 475-486.	0.7	64
39	Subthalamic stimulation improves orienting gaze movements in Parkinson's disease. Clinical Neurophysiology, 2008, 119, 1857-1863.	0.7	46
40	2074v Alpha1-Beta1 and Alpha6-Beta1-Integrin. , 2008, , 1-1.		0
41	Spatial transfer of adaptation of scanning voluntary saccades in humans. NeuroReport, 2008, 19, 37-41.	0.6	13
42	Ocular motor syndromes of the brainstem and cerebellum. Current Opinion in Neurology, 2008, 21, 22-28.	1.8	21
43	Adaptation of Voluntary Saccades, But Not of Reactive Saccades, Transfers to Hand Pointing Movements. Journal of Neurophysiology, 2007, 98, 602-612.	0.9	63
44	Contraversive eye deviation during stimulation of the subthalamic region. Movement Disorders, 2007, 22, 1810-1813.	2.2	20
45	Oculomotor plasticity: Are mechanisms of adaptation for reactive and voluntary saccades separate?. Brain Research, 2007, 1135, 107-121.	1.1	73
46	Kinematics and eye-head coordination of gaze shifts evoked from different sites in the superior colliculus of the cat. Journal of Physiology, 2006, 577, 779-794.	1.3	12
47	Saccadic lateropulsion in Wallenberg syndrome: a window to access cerebellar control of saccades?. Experimental Brain Research, 2006, 174, 555-565.	0.7	20
48	Retention of Saccadic Adaptation in Humans. Annals of the New York Academy of Sciences, 2005, 1039, 558-562.	1.8	11
49	Long-lasting modifications of saccadic eye movements following adaptation induced in the double-step target paradigm. Learning and Memory, 2005, 12, 433-443.	0.5	53
50	Eye Position Specificity of Saccadic Adaptation. , 2004, 45, 123.		51
51	Transfer of adaptation from visually guided saccades to averaging saccades elicited by double visual targets. European Journal of Neuroscience, 2004, 20, 827-836.	1.2	18
52	Direct evidence for the contribution of the superior colliculus in the control of visually guided reaching movements in the cat. Journal of Physiology, 2004, 556, 675-681.	1.3	49
53	Visuo-motor deficits induced by fastigial nucleus inactivation. Cerebellum, 2003, 2, 71-76.	1.4	12
54	Visually Guided Saccade Adaptation: Transfer to Averaging Saccades Elicited by Double Visual Stimuli. Annals of the New York Academy of Sciences, 2003, 1004, 377-380.	1.8	2

#	Article	IF	CITATIONS
55	Control of saccadic eye movements and combined eye/head gaze shifts by the medio-posterior cerebellum. Progress in Brain Research, 2003, 142, 69-89.	0.9	29
56	On-line modification of saccadic eye movements by retinal signals. NeuroReport, 2003, 14, 875-878.	0.6	43
57	Adaptation of Saccadic Eye Movements: Transfer and Specificity. Annals of the New York Academy of Sciences, 2003, 1004, 69-77.	1.8	4
58	Visuo-motor deficits induced by fastigial nucleus inactivation. Cerebellum, 2003, 2, 71-76.	1.4	2
59	Adaptation of Saccadic Eye Movements: Transfer and Specificity. Annals of the New York Academy of Sciences, 2003, 1004, 69-77.	1.8	2
60	Saccadic lateropulsion and upbeat nystagmus: Disorders of caudal medulla. Annals of Neurology, 2002, 52, 658-662.	2.8	32
61	Early head movements elicited by visual stimuli or collicular electrical stimulation in the cat. Vision Research, 2001, 41, 3283-3294.	0.7	31
62	Gaze shifts evoked by electrical stimulation of the superior colliculus in the head-unrestrained cat. II. Effect of muscimol inactivation of the caudal fastigial nucleus. European Journal of Neuroscience, 2001, 14, 1345-1359.	1.2	15
63	Gaze shifts evoked by electrical stimulation of the superior colliculus in the head-unrestrained cat. I. Effect of the locus and of the parameters of stimulation. European Journal of Neuroscience, 2001, 14, 1331-1344.	1.2	22
64	Functional adaptation of reactive saccades in humans: a PET study. Experimental Brain Research, 2000, 132, 243-259.	0.7	76
65	Altered visuo-motor behavior during inactivation of the caudal fastigial nucleus in the cat. Experimental Brain Research, 2000, 132, 457-463.	0.7	40
66	New insights on eye blindness and hand sight: Temporal constraints of visuo-motor networks. Visual Cognition, 2000, 7, 785-809.	0.9	112
67	Learning from cerebellar lesions about the temporal and spatial aspects of saccadic control. Behavioral and Brain Sciences, 1999, 22, 687-688.	0.4	0
68	Effects of short-term adaptation of saccadic gaze amplitude on hand-pointing movements. Experimental Brain Research, 1999, 124, 351-362.	0.7	35
69	Functional anatomy of saccadic adaptation in humans. Nature Neuroscience, 1998, 1, 524-528.	7.1	127
70	From Eye to Hand: Planning Goal-directed Movements. Neuroscience and Biobehavioral Reviews, 1998, 22, 761-788.	2.9	255
71	Orienting Gaze Shifts During Muscimol Inactivation of Caudal Fastigial Nucleus in the Cat. I. Gaze Dysmetria. Journal of Neurophysiology, 1998, 79, 1942-1958.	0.9	54
72	Orienting Gaze Shifts During Muscimol Inactivation of Caudal Fastigial Nucleus in the Cat. II. Dynamics and Eye-Head Coupling. Journal of Neurophysiology, 1998, 79, 1959-1976.	0.9	32

#	Article	IF	CITATIONS
73	Compensation for Gaze Perturbation During Inactivation of the Caudal Fastigial Nucleus in the Head-Unrestrained Cat. Journal of Neurophysiology, 1998, 80, 1552-1557.	0.9	18
74	Contribution of the Rostral Fastigial Nucleus to the Control of Orienting Gaze Shifts in the Head-Unrestrained Cat. Journal of Neurophysiology, 1998, 80, 1180-1196.	0.9	73
75	Changes in initiation of orienting gaze shifts after muscimol inactivation of the caudal fastigial nucleus in the cat. Journal of Physiology, 1997, 503, 657-671.	1.3	25
76	The caudo ventral pontine tegmentum is involved in the generation of high velocity eye saccades in bursts during paradoxical sleep in the cat. Neuroscience Letters, 1996, 213, 127-131.	1.0	124
77	On the short-term adaptation of eye saccades and its transfer to head movements. Experimental Brain Research, 1996, 111, 477-82.	0.7	15
78	Modifications in end positions of arm movements following short term saccadic adaptation. NeuroReport, 1995, 6, 1733-1736.	0.6	66
79	Cerebellar contribution to the spatial encoding of orienting gaze shifts in the head-free cat. Journal of Neurophysiology, 1994, 72, 2547-2550.	0.9	32
80	Eye Saccade Dynamics During Paradoxical Sleep in the Cat. European Journal of Neuroscience, 1994, 6, 1298-1306.	1.2	111
81	Error Processing in Pointing at Randomly Feedback-Induced Double-Step Stimuli. Journal of Motor Behavior, 1993, 25, 299-308.	0.5	58
82	A non-contact system for 2-dimensional trajectory recording. Journal of Neuroscience Methods, 1992, 43, 77-82.	1.3	12
83	Movement of neural activity on the superior colliculus motor map during gaze shifts. Science, 1991, 251, 1358-1360.	6.0	235
84	Compensatory eye and head movements generated by the cat following stimulation-induced perturbations in gaze position. Experimental Brain Research, 1989, 78, 654-8.	0.7	160
85	Vestibuloocular reflex inhibition and gaze saccade control characteristics during eye-head orientation in humans. Journal of Neurophysiology, 1988, 59, 997-1013.	0.9	163
86	Vestibulo-ocular reflex (VOR) induced by passive head rotation and goal-directed saccadic eye movements do not simply add in man. Brain Research, 1986, 380, 397-400.	1.1	156
87	Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature, 1986, 320, 748-750.	13.7	1,039