Ashim Gurung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6756681/publications.pdf

Version: 2024-02-01

42 papers

2,623 citations

201385 27 h-index 288905 40 g-index

42 all docs 42 docs citations 42 times ranked 3593 citing authors

#	Article	IF	CITATIONS
1	Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nature Communications, 2020, 11, 93.	5 . 8	312
2	Solar Charging Batteries: Advances, Challenges, and Opportunities. Joule, 2018, 2, 1217-1230.	11.7	229
3	Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes. Energy Storage Materials, 2019, 18, 389-396.	9.5	149
4	Highly Efficient Perovskite Solar Cell Photocharging of Lithium Ion Battery Using DC–DC Booster. Advanced Energy Materials, 2017, 7, 1602105.	10.2	128
5	Ultrathin Bilayer of Graphite/SiO ₂ as Solid Interface for Reviving Li Metal Anode. Advanced Energy Materials, 2019, 9, 1901486.	10.2	128
6	8-Hydroxylquinoline as a strong alternative anchoring group for porphyrin-sensitized solar cells. Chemical Communications, 2012, 48, 5910.	2.2	106
7	Tin Selenide – Multi-Walled Carbon Nanotubes Hybrid Anodes for High Performance Lithium-Ion Batteries. Electrochimica Acta, 2016, 211, 720-725.	2.6	105
8	Tailored PEDOT:PSS hole transport layer for higher performance in perovskite solar cells: Enhancement of electrical and optical properties with improved morphology. Journal of Energy Chemistry, 2020, 44, 41-50.	7.1	105
9	Phenylhydrazinium lodide for Surface Passivation and Defects Suppression in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000778.	7.8	103
10	Tuning Hole Transport Layer Using Urea for Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1806740.	7.8	101
11	Improving photovoltaic performance of carbon-based CsPbBr3 perovskite solar cells by interfacial engineering using P3HT interlayer. Journal of Power Sources, 2019, 432, 48-54.	4.0	94
12	Self-recovery in Li-metal hybrid lithium-ion batteries <i>via</i> WO ₃ reduction. Nanoscale, 2018, 10, 15956-15966.	2.8	87
13	A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries. Sustainable Energy and Fuels, 2019, 3, 3279-3309.	2.5	83
14	MOF-derived hierarchical carbon network as an extremely-high-performance supercapacitor electrode. Electrochimica Acta, 2021, 394, 139058.	2.6	67
15	Graphene Oxide–Silver Nanowire Nanocomposites for Enhanced Sensing of Hg ²⁺ . ACS Applied Nano Materials, 2019, 2, 4842-4851.	2.4	62
16	Transparent MoS ₂ /PEDOT Composite Counter Electrodes for Bifacial Dye-Sensitized Solar Cells. ACS Omega, 2020, 5, 8687-8696.	1.6	60
17	High-performance carbon electrode-based CsPbI2Br inorganic perovskite solar cell based on poly(3-hexylthiophene)-carbon nanotubes composite hole-transporting layer. Journal of Colloid and Interface Science, 2019, 555, 180-186.	5.0	58
18	Binder Free Hierarchical Mesoporous Carbon Foam for High Performance Lithium Ion Battery. Scientific Reports, 2017, 7, 1440.	1.6	56

#	Article	IF	CITATIONS
19	Thermal Stability and Performance Enhancement of Perovskite Solar Cells Through Oxalic Acid-Induced Perovskite Formation. ACS Applied Energy Materials, 2020, 3, 2432-2439.	2.5	55
20	Higher efficiency perovskite solar cells using additives of Lil, LiTFSI and BMImI in the PbI ₂ precursor. Sustainable Energy and Fuels, 2017, 1, 2162-2171.	2.5	53
21	A copper-clad lithiophilic current collector for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 1911-1919.	5.2	49
22	Grain Boundary Defect Passivation of Triple Cation Mixed Halide Perovskite with Hydrazine-Based Aromatic Iodide for Efficiency Improvement. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41312-41322.	4.0	45
23	Electrochemical Phosphate Sensors Using Silver Nanowires Treated Screen Printed Electrodes. IEEE Sensors Journal, 2018, 18, 3480-3485.	2.4	43
24	Mitigating Open-Circuit Voltage Loss in Pb–Sn Low-Bandgap Perovskite Solar Cells via Additive Engineering. ACS Applied Energy Materials, 2021, 4, 1731-1742.	2.5	43
25	A simple acrylic acid functionalized zinc porphyrin for cost-effective dye-sensitized solar cells. Chemical Communications, 2012, 48, 7619.	2.2	34
26	Kirkendall Growth of Hollow Mn $<$ sub $>3<$ sub $>0<$ sub $>4<$ sub $>$ Nanoparticles upon Galvanic Reaction of MnO with Cu $<$ sup $>2+<$ sup $>$ and Evaluation as Anode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 11089-11099.	1.5	34
27	Rearâ€Illuminated Perovskite Photorechargeable Lithium Battery. Advanced Functional Materials, 2020, 30, 2001865.	7.8	31
28	Synergistic engineering of hole transport materials in perovskite solar cells. InformaÄnÃ-Materiály, 2020, 2, 928-941.	8.5	29
29	Activation of Passive Nanofillers in Composite Polymer Electrolyte for Higher Performance Lithiumâ€lon Batteries. Advanced Sustainable Systems, 2017, 1, 1700043.	2.7	26
30	Nanoscale control of grain boundary potential barrier, dopant density and filled trap state density for higher efficiency perovskite solar cells. InformaÄnÄ-Materiály, 2020, 2, 409-423.	8.5	25
31	Grain Boundary Defect Passivation in Quadruple Cation Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000740.	3.1	19
32	Enhancing efficiency and stability of inverted structure perovskite solar cells with fullerene C60 doped PC61BM electron transport layer. Carbon, 2021, 180, 226-236.	5.4	19
33	A Simple Cost-Effective Approach to Enhance Performance of Bifacial Dye-Sensitized Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 912-917.	1.5	16
34	Mitigating Interfacial Mismatch between Lithium Metal and Garnet-Type Solid Electrolyte by Depositing Metal Nitride Lithiophilic Interlayer. ACS Applied Energy Materials, 2022, 5, 648-657.	2.5	16
35	Tailoring the Grain Boundaries of Wideâ€Bandgap Perovskite Solar Cells by Molecular Engineering. Solar Rrl, 2020, 4, 2000384.	3.1	15
36	Metallic 1T Phase Tungsten Disulfide Microflowers for Trace Level Detection of Hg ²⁺ lons. Advanced Sustainable Systems, 2020, 4, 2000068.	2.7	12

ASHIM GURUNG

#	Article	lF	CITATION
37	Improved Performance of Carbon Electrode Perovskite Solar Cells Using Urea Treatment in Twoâ€Step Processing. ChemNanoMat, 2020, 6, 806-815.	1.5	9
38	Interface Engineering of Pb–Sn Lowâ€Bandgap Perovskite Solar Cells for Improved Efficiency and Stability. Solar Rrl, 2022, 6, .	3.1	8
39	Highly efficient electron transport based on double-layered PC61BM in inverted perovskite solar cells. Organic Electronics, 2022, 100, 106391.	1.4	4
40	Kinetic Monte Carlo Simulation of Perovskite Solar Cells to Probe Film Coverage and Thickness. Advanced Energy and Sustainability Research, 2021, 2, 2000068.	2.8	3
41	Urea treated WO <inf>3</inf> and SnO <inf>2</inf> as cost effective and efficient counter electrodes of dye sensitized solar cells., 2016,,.		2
42	Advanced Coupling of Energy Storage and Photovoltaics. , 2019, , 317-350.		0