Han Wu

List of Publications by Citations

Source: https://exaly.com/author-pdf/6756664/han-wu-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

75	1,125	2 O	30
papers	citations	h-index	g-index
81	1,478 ext. citations	5.7	5.01
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
75	Spray and Combustion Characteristics of Neat Acetone-Butanol-Ethanol, n-Butanol, and Diesel in a Constant Volume Chamber. <i>Energy & Diesel</i> , 2014, 28, 6380-6391	4.1	90
74	Impacts of acetone on the spray combustion of Acetone B utanol E thanol (ABE)-Diesel blends under low ambient temperature. <i>Fuel</i> , 2015 , 142, 109-116	7.1	81
73	Impacts of Acetone B utanol E thanol (ABE) ratio on spray and combustion characteristics of ABEdiesel blends. <i>Applied Energy</i> , 2015 , 149, 367-378	10.7	77
72	Improved SI engine efficiency using Acetone B utanol E thanol (ABE). <i>Fuel</i> , 2016 , 174, 333-343	7.1	63
71	Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions. <i>Applied Energy</i> , 2019 , 251, 113307	10.7	40
70	Experimental investigation on the sputtering and micro-explosion of emulsion fuel droplets during impact on a heated surface. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 132, 130-137	4.9	39
69	Combustion characteristics and performance of a methanol fueled homogenous charge compression ignition (HCCI) engine. <i>Journal of the Energy Institute</i> , 2016 , 89, 346-353	5.7	34
68	Experimental and kinetic studies on laminar flame characteristics of acetone-butanol-ethanol (ABE) and toluene reference fuel (TRF) blends at atmospheric pressure. <i>Fuel</i> , 2018 , 232, 755-768	7.1	33
67	Experimental and kinetic investigation on soot formation of n-butanol-gasoline blends in laminar coflow diffusion flames. <i>Fuel</i> , 2018 , 213, 195-205	7.1	33
66	Experimental and Kinetical Study of Component Volumetric Effects on Laminar Flame Speed of Acetone B utanol E thanol (ABE). <i>Energy & Description</i> 2018, 32, 6278-6292	4.1	31
65	The experimental investigation on the impact of toluene addition on low-temperature ignition characteristics of diesel spray. <i>Fuel</i> , 2019 , 254, 115580	7.1	28
64	An experimental study on soot distribution characteristics of ethanol-gasoline blends in laminar diffusion flames. <i>Journal of the Energy Institute</i> , 2018 , 91, 997-1008	5.7	28
63	An investigation on a diesel jetlignition characteristics under cold-start conditions. <i>Applied Thermal Engineering</i> , 2017 , 121, 511-519	5.8	27
62	Experimental Investigation of Polycyclic Aromatic Hydrocarbons Growth Characteristics of Gasoline Mixed with Methanol, Ethanol, or n-Butanol in Laminar Diffusion Flames. <i>Energy & Diffusion Flames</i> , 2018, 32, 6823-6833	4.1	27
61	Nozzle internal flow and spray primary breakup with the application of closely coupled split injection strategy. <i>Fuel</i> , 2018 , 228, 187-196	7.1	27
60	Spray performance of air-assisted kerosene injection in a constant volume chamber under various in-cylinder GDI engine conditions. <i>Applied Thermal Engineering</i> , 2019 , 150, 762-769	5.8	26
59	Study of the spray characteristics of a diesel surrogate for diesel engines under sub/supercritical states injected into atmospheric environment. <i>Fuel</i> , 2018 , 230, 308-318	7.1	23

(2019-2020)

58	Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions. <i>Applied Energy</i> , 2020 , 262, 114552	10.7	22	
57	Optical soot measurement of bio-butanol upstream product, ABE (Acetone B utanol E thanol), under diesel-like conditions. <i>Fuel</i> , 2016 , 181, 300-309	7.1	22	
56	Experimental investigation on the characteristic of jet break-up for butanol droplet impacting onto a heated surface in the film boiling regime. <i>International Journal of Heat and Mass Transfer</i> , 2018 , 123, 129-136	4.9	21	
55	Experimental and kinetic studies of soot formation in methanol-gasoline coflow diffusion flames. Journal of the Energy Institute, 2019 , 92, 38-50	5.7	20	
54	An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine. <i>Applied Energy</i> , 2020 , 261, 114455	10.7	18	
53	The effect of turbulent jet induced by pre-chamber sparkplug on combustion characteristics of hydrogen-air pre-mixture. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 8116-8126	6.7	18	
52	Breakup of fuel sprays under cavitating and flash boiling conditions. <i>Applied Thermal Engineering</i> , 2018 , 143, 22-33	5.8	17	
51	An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine 2017 ,		17	
50	The optical investigation of hydrogen enrichment effects on combustion and soot emission characteristics of CNG/diesel dual-fuel engine. <i>Fuel</i> , 2020 , 280, 118639	7.1	17	
49	Microscopic study on the mechanisms for formation of the initial spray morphology. <i>Fuel</i> , 2019 , 235, 715-722	7.1	16	
48	Experimental and kinetic study on ignition of DME/n-butane mixtures under high pressures on a rapid compression machine. <i>Fuel</i> , 2018 , 225, 35-46	7.1	15	
47	Effect of Alcohol Addition to Gasoline on Soot Distribution Characteristics in Laminar Diffusion Flames. <i>Chemical Engineering and Technology</i> , 2018 , 41, 897-906	2	15	
46	Effects of alcohol addition to traditional fuels on soot formation: A review. <i>International Journal of Engine Research</i> , 2021 , 22, 1395-1420	2.7	12	
45	Experimental study on the combustion characteristics of impinging diesel spray at low temperature environment. <i>Applied Thermal Engineering</i> , 2019 , 148, 1233-1245	5.8	11	
44	Ignition properties of lean DME/H2 mixtures at low temperatures and elevated pressures. <i>Fuel</i> , 2018 , 226, 545-554	7.1	11	
43	Schlieren investigation on impacts of duct size on macroscopic spray characteristics of ducted fuel injection. <i>Applied Thermal Engineering</i> , 2020 , 176, 115440	5.8	10	
42	Investigation on Soot Characteristics of Gasoline/Diesel Blends in a Laminar Coflow Diffusion Flame. <i>Energy & Energy & </i>	4.1	10	
41	Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects. <i>Energy</i> , 2019 , 187, 115997	7.9	9	

40	Hydrogen effect on lean flammability limits and burning characteristics of an isooctane⊞ir mixture. <i>Fuel</i> , 2020 , 266, 117144	7.1	9
39	An optical investigation on spray macroscopic characteristics of ducted fuel injection. <i>Experimental Thermal and Fluid Science</i> , 2019 , 109, 109918	3	9
38	Experimental and kinetic investigation on the effects of hydrogen additive on laminar premixed methanolair flames. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 22263-22281	6.7	8
37	Effect of Toluene Addition on the PAH Formation in Laminar Coflow Diffusion Flames of n-Heptane and Isooctane. <i>Energy & Diffusion Flames</i> , 2018 , 32, 7142-7152	4.1	8
36	Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures. <i>Renewable Energy</i> , 2020 , 154, 209-222	8.1	7
35	Investigation on Spray and Flame Lift-Off Length of Acetone B utanol E thanol D iesel Blend in a Constant Volume Chamber. <i>Journal of Engineering for Gas Turbines and Power</i> , 2015 , 137,	1.7	7
34	EFFECT OF NOZZLE DIAMETER ON MACROSCOPIC SPRAY BEHAVIOR OF HEAVY-DUTY DIESEL ENGINE UNDER COLD-START CONDITIONS. <i>Atomization and Sprays</i> , 2019 , 29, 741-762	1.2	7
33	Optical experiments on diesel knock for high altitude engines under spray impingement conditions. <i>Fuel</i> , 2020 , 278, 118268	7.1	6
32	Effect of injection pressure and fuel mass on wall-impinging ignition and combustion characteristics of heavy-duty diesel engine at low temperatures. <i>Fuel</i> , 2021 , 299, 120904	7.1	6
31	Acting mechanism of low ambient temperature on wall-impinging diesel spray ignition at an extensive range. <i>Fuel</i> , 2021 , 304, 121344	7.1	6
30	Characteristics of premixed hydrogen/air squish flame in a confined vessel. <i>Journal of the Energy Institute</i> , 2018 , 91, 1102-1112	5.7	5
29	Comparison Study on Combustion and Emission Characteristics of ABE/IBE-Diesel Blends in a Common-Rreail Diesel Engine 2017 ,		5
28	Study on lean burn limits and burning characteristics of n-heptane with effects of hydrogen enrichment. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 25452-25467	6.7	5
27	A numerical investigation of injection pressure effects on wall-impinging ignition at low-temperatures for heavy-duty diesel engine. <i>Applied Thermal Engineering</i> , 2021 , 184, 116366	5.8	5
26	Experimental and numerical study on formation mechanism of premixed hydrogen-air squish flame in wall constrained environment. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 18559-18572	6.7	4
25	Autoignition of DME/C2H6 Mixtures Under High-Pressure and Low-Temperature Conditions. <i>Combustion Science and Technology</i> , 2019 , 191, 1201-1218	1.5	4
24	Study on oxygen species characteristics of CexMn1-xO2 catalyst for diesel soot oxidation. <i>Energy Sources, Part A: Recovery, Utilization and Environmental Effects</i> , 2021 , 43, 326-336	1.6	4
23	Experimental and numerical study on the effect of dimensionless parameters on the characteristics of droplet atomization caused by periodic inertial force. <i>Fuel</i> , 2019 , 253, 941-949	7.1	3

22	Soot and PAH Formation Characteristics of Methanol-Gasoline Belnds in Laminar Coflow Diffusion Flames 2018 ,		3
21	Effect of Ethanol Addition on Soot Formation of Gasoline in Laminar Diffusion Flames 2017,		3
20	The Optical Investigation on Initial Flame Developing Characteristics of Diesel Jet under Cold Start Conditions. <i>Combustion Science and Technology</i> , 2021 , 193, 1696-1717	1.5	3
19	Wall Temperature Effects on Ignition Characteristics of Liquid-phase Spray Impingement for Heavy-duty Diesel Engine at Low Temperatures. <i>Combustion Science and Technology</i> ,1-16	1.5	3
18	Effect of Hydrogen Volume Ratio on the Combustion Characteristics of CNG-Diesel Dual-Fuel Engine 2017 ,		2
17	Experimental and Kinetic Investigation of Pressure and Temperature Effects on Burning Characteristics of n-Heptane/Air/Hydrogen up to Near Lean Burn Limits		2
16	A novel flameless oxidation and in-chamber melting system coupled with advanced scrubbers for a laboratory waste plant. <i>Waste Management</i> , 2021 , 126, 706-718	8.6	2
15	Analysis of mechanism of ducted fuel injection under non-vaporizing condition. Fuel, 2021, 305, 121496	7.1	2
14	Spray Entrainment Coefficient Modeling for High Injection Pressure Based On Entrainment Velocity and Force Analysis. <i>Journal of Fluids Engineering, Transactions of the ASME</i> , 2022 ,	2.1	2
13	Effect of droplet size on the jet breakup characteristics of n-butanol during impact on a heated surface. <i>Journal of Traffic and Transportation Engineering (English Edition)</i> , 2020 , 7, 320-330	3.9	1
12	Magnetic field analysis and optimal design of magnetic bearing 2009,		1
11	Experimental Evaluation of Various Gasoline Surrogates Based on Soot Formation Characteristics. <i>Energy & Energy & Energ</i>	4.1	1
10	Ultra-low PCDD/F emissions and their particle size and mass distribution in a hazardous waste treatment system. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127032	12.8	1
9	Numerical study of wall-impinging ignition at different wall distances for cold start of heavy-duty diesel engine. <i>Applied Thermal Engineering</i> , 2022 , 212, 118535	5.8	1
8	Study on impinging ignition and wall-attached fuel film combustion characteristics of light- to heavy-duty diesel engines at low temperatures. <i>Fuel</i> , 2022 , 313, 123065	7.1	0
7	Numerical Investigation of Negative Temperature Coefficient Effects on Sooting Characteristics in a Laminar Co-flow Diffusion Flame. <i>ACS Omega</i> , 2021 , 6, 15156-15167	3.9	O
6	Investigations on the cellular instabilities of expanding hydrogen/methanol spherical flame. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 33601-33615	6.7	0
5	Effects of CO2 on the laminar burning velocities of toluene reference fuel (TRF) with increasing initial temperatures and pressures. <i>Fuel</i> , 2022 , 318, 123508	7.1	0

4	Theoretical study on the reaction of nitric oxide with 2-hydroxyethyl radical. <i>Molecular Physics</i> , 2021 , 119, e1811906	1.7
3	Parametric Simulations on Leakage and Performance of a Miniature Free-Piston Generator (MFPG). <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 7742	2.6
2	Effect of the Air Flow on the Combustion Process and Preheating Effect of the Intake Manifold Burner. <i>Energies</i> , 2022 , 15, 3260	3.1
1	Study on Engine Performance and Combustion System Optimization of a Poppet-Valve Two-Stroke Diesel Engine. <i>Energies</i> , 2022 , 15, 3685	3.1