Yun-Yin Niu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6756223/publications.pdf

Version: 2024-02-01

185 papers	2,571 citations	26 h-index	243625 44 g-index
185	185	185	1618
all docs	docs citations	times ranked	citing authors

#	ARTICLE	IF	CITATIONS
1			

#	Article	IF	Citations
19	In situ formation of 4-cyanopyridinecarboxylic acid and its polyacid doping coordination polymer for adsorption of organic dyes in wastewater. Inorganic Chemistry Communication, 2020, 118, 108002.	3.9	9
20	Two Nanometer-Sized High-Nuclearity Homometallic Bromide Clusters (M ₂₆ Br ₃₈) ^{12–} (M = Cu, Ag): Syntheses, Crystal Structures, and Efficient Adsorption Properties. Inorganic Chemistry, 2020, 59, 9579-9586.	4.0	8
21	N-Benzyl HMTA induced self-assembly of organic-inorganic hybrid materials for efficient photocatalytic degradation of tetracycline. Journal of Hazardous Materials, 2020, 391, 122121.	12.4	38
22	Preparation and Analyses of the Multifunctional Properties of 2D and 3D MOFs Constructed from Copper(I) Halides and Hexamethylenetetramine. ACS Omega, 2019, 4, 12402-12409.	3.5	7
23	Synthesis, structure and optical properties of novel double penetration polypseudorotaxane compound templated by branched divalent cation template. Journal of the Iranian Chemical Society, 2019, 16, 939-944.	2.2	0
24	Assembly and Adsorption Properties of Seven Supramolecular Compounds with Heteromacrocycle Imidazolium. ACS Omega, 2019, 4, 8926-8934.	3.5	12
25	Preparation and application of two kinds of supramolecular compounds with photodegradation of organic contaminants in wastewater. Main Group Chemistry, 2019, 18, 43-54.	0.8	3
26	Hybrid Supramolecules for Azolium-Linked Cyclophane Immobilization and Conformation Study: Synthesis, Characterization, and Photocatalytic Degradation. ACS Omega, 2019, 4, 5137-5146.	3.5	12
27	Conformation behavior of azolium-linked cyclophane upon immobilization by hybrid supramolecule assembly: Synthesis and characterization. Main Group Chemistry, 2019, 18, 437-443.	0.8	0
28	Hybrid supramolecule for azolium-linked cyclophane immobilization and conformation study: Synthesis, characterization and thermostability. Main Group Chemistry, 2019, 18, 459-466.	0.8	1
29	A new polyoxometalate supermolecular compound as fluorescent probe for detecting of Fe (III): Synthesis, structures, and properties. Main Group Chemistry, 2019, 18, 291-304.	0.8	9
30	Physicochemical studies on molecular interactions between small biomolecules and drug benzalkonium chloride at different temperatures T = (293.15–313.15) K. Journal of Molecular Liquids, 2019, 274, 115-124.	4.9	11
31	Synthesis, crystallographic and spectral studies of homochiral cobalt(II) and nickel(II) complexes of a new terpyridylaminoacid ligand. Journal of Molecular Structure, 2018, 1157, 355-363.	3.6	9
32	The conformational behavior of multivalent tris(imidazolium)cyclophanes in the hybrids with metal (pseudo)halides or polyoxometalates. CrystEngComm, 2018, 20, 7184-7194.	2.6	16
33	Three novel cation-induced supramolecular compounds with 1D polymeric lead(II) iodide frameworks: Synthesis and characterization. Main Group Chemistry, 2018, 17, 257-266.	0.8	5
34	Synthesis, structures and applications as fluorescence probes of novel $Hg(II)/Ag(I)$ functional supramolecular compounds based on nitrogen heterocyclic cations. Main Group Chemistry, 2018, 17, 273-283.	0.8	4
35	Novel tetracationic template and application in construction metal thiocyanate polymers. Main Group Chemistry, 2018, 17, 27-33.	0.8	4
36	Synthesis, structure and photocatalytic properties of two hybrid compounds prepared by N-methyl-4,4 \hat{a} \in 2-bipyridinium chloride. Main Group Chemistry, 2018, 17, 211-218.	0.8	6

#	Article	IF	Citations
37	Three new supramolecular polymers as fluorescence probes for detecting Fe (III): Synthesis, structures, and properties. Main Group Chemistry, 2018, 17, 133-146.	0.8	3
38	Five novel copper halide/thiocyanate coordination compounds directed by 4-pyridyl dithioether ligands: syntheses, structures, and photocatalytic properties. Journal of Molecular Structure, 2018, 1173, 763-769.	3.6	7
39	Novel Branched Template for the Use in Construction of [CuNCS]n Polypseudorotaxane: Synthesis, Structures, and Photocatalytic Properties. Journal of Cluster Science, 2018, 29, 1039-1049.	3.3	6
40	Studies on crystal structures, optical and electrical properties of viologen cation salts of d10 metal halide anions. Journal of Molecular Structure, 2017, 1133, 101-110.	3.6	9
41	Two new supramolecular compounds induced by novel vinylpyridine cationic templates: synthesis, structures and enhanced photocatalytic properties. Journal of Chemical Sciences, 2017, 129, 1521-1530.	1.5	4
42	Bis(3,5-lutidine)alkyl Dications and Their Use in the Fabrication of Organic–Inorganic 2D Polypseudorotaxane by Templated Self-Assembly. Crystal Growth and Design, 2016, 16, 2487-2491.	3.0	22
43	Two novel cation-induced supramolecular polymers with 2-3D polymeric cuprous thiocyanate frameworks: Synthesis, characterization and photocatalytic activities for the degradation of organic dye contaminants. Inorganica Chimica Acta, 2016, 450, 154-161.	2.4	12
44	Three cation-templated Cu(<scp>i</scp>) self-assemblies: synthesis, structures, and photocatalytic properties. New Journal of Chemistry, 2016, 40, 6086-6092.	2.8	25
45	A new nanocrystalline inorganic–organic hybrid exhibiting semiconducting properties and applications. Dalton Transactions, 2016, 45, 2624-2628.	3.3	22
46	Synthesis and Crystal Structures of Inorganic-Organic Hybrid Materials: [α,α′-bis(dimethylimidazolium) p-xylene][Cu ₂ (SCN) ₄] and [α,α′-bis(dimethylimidazolium) p-xylene][Ag ₂ (SCN) ₄]. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 127-132.	0.6	1
47	Syntheses and Crystal Structures of Two Inorganic–Organic Hybrid Materials: [BDMLPX]3[Mo8O26]2[H3O]2·H2O and [BIIT][HBIIT] [CIMo12O40]. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 280-285.	0.6	1
48	A new Mo/S/Cu polymeric cluster: Synthesis, structure and properties. Main Group Chemistry, 2015, 15, 67-74.	0.8	5
49	A supramolecular metal-organic framework derived from bismuth iodide and 4,4′-bipyridinium derivative: Synthesis, structure and efficient adsorption of dyes. Microporous and Mesoporous Materials, 2015, 214, 136-142.	4.4	18
50	Synthesis, Structures, and Properties of {(BDMLP) ₂ [Pb ₂ I ₈]} and {(MLDE)[Pbl ₃]} Induced by N-Containing Organic Cation Templates. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 1596-1601.	0.6	1
51	Syntheses and Crystal Structure of Three Novel Supramolecular Halides/Pseudohalides {(DMB)[Cu ₂ (SCN) ₄]} _{n,} {(DMB)[Cu(SCN) ₄]}, and {(DMB)[Ag ₂ (SCN) ₄]} _n Directed by Dicationic Template Possessing C2-Symmetry. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45,	0.6	1
52	Synthesis and Structural Characterization of [(Pb ₆ 1 ₂₂)(DMF) ₂ (DPB) ₅] Directed by 1,1′-dipentyl-4,4′-bipyridinium Cation. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 1347-1351.	0.6	1
53	Synthesis, crystal structures and sensitivity to sunlight of two Ag (I) photoresponsive metal–organic complexes. Inorganic Chemistry Communication, 2015, 54, 45-49.	3.9	17
54	Self-assembly of five new organic–inorganic hybrids based on two new flexible tricationic templates. Inorganica Chimica Acta, 2015, 426, 80-88.	2.4	6

#	Article	IF	Citations
55	Subtle side chain effect of methyl substituent on the self-assembly of polypseudorotaxane complexes: Syntheses, structural diversity and photocatalytic properties. Inorganica Chimica Acta, 2015, 429, 81-86.	2.4	16
56	Synthesis, structures and properties of two novel supramolecular polymers of Cu(I) with $1,1\hat{a}\in^2$ -Bis(isoquinoline)-1,4-Phenyldimethylenyl. Main Group Chemistry, 2015, 14, 71-78.	0.8	6
57	Crystal structures and photocatalytic properties of two novel iodoplumbate hybrids templated by multivalent organic cations. New Journal of Chemistry, 2015, 39, 7372-7378.	2.8	35
58	Fabricating roughened surfaces on halloysite nanotubes via alkali etching for deposition of high-efficiency Pt nanocatalysts. CrystEngComm, 2015, 17, 3110-3116.	2.6	49
59	Synthesis and Crystal Structure of an Inorganic-Organic Hybrid Material: [1,1′-dibutyl-4,4′-bipyridinium][α-Mo ₈ O ₂₆] _{0.5} . Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 1307-1310.	0.6	1
60	Extended supramolecular structures derived from metal pseudohalides and 4,4′-bipyridinium derivative: Synthesis, structures and optical properties. Inorganica Chimica Acta, 2015, 430, 46-54.	2.4	9
61	Synthesis, Structures and Photocatalytic Properties of Two Novel Ag(I) Polymers Directed by 1,3-Bis(4-methylpyridine)alkane Cation. Journal of Cluster Science, 2015, 26, 1723-1733.	3.3	3
62	Syntheses and characterization of two novel 1D Pb(II) Halide supramolecular polymers possessing incomplete Cubane subunit directed by π-conjugated Dication templates. Journal of Chemical Sciences, 2015, 127, 1235-1242.	1.5	2
63	Five hybrid thiocyanate networks oriented by polyvalent cationic templates: Synthesis, structure and properties. Inorganica Chimica Acta, 2015, 437, 1-10.	2.4	6
64	Four hybrid compounds based on a new type of molybdates and a flexible tripodal ligand: synthesis, structures, photochemical and electrochemical properties. RSC Advances, 2015, 5, 74065-74074.	3.6	18
65	Three silver (I) supramolecular compounds constructed from pyridinium or methylimidazolium polycations: Synthesis, crystal structure and properties. Journal of Chemical Sciences, 2015, 127, 1513-1521.	1.5	6
66	Novel bis (methylimidazolium) alkane bolaamphiphiles as templates for the construction of haloclusters supramolecules. Inorganica Chimica Acta, 2015, 425, 52-60.	2.4	10
67	Bis(imidazole) Cation Templates and Subtle Effect: Syntheses and Characterization of Three New Pb(II) Halide Supramolecular Polymers. Journal of Cluster Science, 2015, 26, 1027-1039.	3.3	6
68	The subtle effect of methyl substituent in C2-symmetric template on the formation of halocluster hybrids. Inorganica Chimica Acta, 2014, 409, 227-232.	2.4	32
69	Construction and isomer recognition of polyoxometalates functionalized by 1,2-dimethylimidazole alkane templates. Inorganica Chimica Acta, 2014, 410, 136-143.	2.4	14
70	Synthesis and Characterization of Two New Polymolybdate Clusters Containing Chlorine Based on Mo-POMs and N-heterocycle Templates. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 678-686.	0.6	1
71	Six cation-templated halometal complexes and C–H activation of alkylene-bridged azoles. Journal of Coordination Chemistry, 2014, 67, 807-821.	2.2	3
72	Templated fabrication, isomer recognition of series of 1,1′-(alkane-1,ï‰-diyl)-bis(3-methylimidazolium)-induced polyoxometalates (ï‰=1–11). Inorganica Chimic 2014, 409, 418-426.	a Aeta,	19

#	Article	IF	Citations
73	Three unprecedent polycational templated cuprous thiocyanate networks: synthesis, structure, and properties. CrystEngComm, 2013, 15, 8395.	2.6	14
74	An unprecedented \hat{l}^1 -type octamolybdate: [TbI1]2[(\hat{l}^2 -Mo8O26)0.5(\hat{l}^1 -Mo8O26)] directed by a new tricationic template. CrystEngComm, 2013, 15, 9844.	2.6	32
7 5	Synthesis and Structural Characterization of Cation-Induced Complex: [Cd ₄ (SCN) ₆ (BPB)] _n With One-Dimensional Double Helix. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 1381-1384.	0.6	0
76	pH-dependent assembly of metal–organic hybrid compounds based on octamolybdates and a new flexible multidentate ligand. CrystEngComm, 2013, 15, 9938.	2.6	17
77	Synthesis and Structure of a HgCl ₂ Coordination Polymer With 1,4-Bis(benzimidazole-1-yl-methylene)benzene (bbmb). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 1307-1310.	0.6	4
78	The side chain template effect in viologen on the formation of polypseudorotaxane architecture: six novel metal coordination polymers and their properties. CrystEngComm, 2013, 15, 3835.	2.6	26
79	Syntheses, Structure, Photoluminescent, and Thermal Properties of a Novel Coordination Polymer [Cul(4-bpfob)(HCN)(DMF)]n With One-Dimensional Helical Chain. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 1150-1153.	0.6	2
80	Hydrothermal Synthesis and Crystal Structure of a Novel Supramolecular Coordination Polymer $\{[Cu(bpdc)(H2O)] < sub>2A·2H2O\}$. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 1007-1012.	0.6	0
81	Syntheses, Crystal Structures of Five Supramolecular Halides/Pseudohalides: (BPP)[Cdl ₄], (BPP)[HgBr ₄], (BPP)[Hg(SCN)Br ₃], (BPP)[ZnBr _{0.32} Cl _{0.68} (NCS) ₃], and (BPP)[Fe(CN) ₆]Â-2.5H ₂ O Directed by 1,3-bis(pyridinium) Propane Cation. Synthesis	0.6	1
82	A Novel Twin-Nest-Shaped Supramolecular Cluster Compound [Et ₃ N(n-Bu)] ₄ [(Mo ₂ O ₂ S ₆ Cu ₆ 1 _{1<}}	ub>6 <th>ɔ>)]:</th>	ɔ>)]:
83	Synthesis, Crystal Structure, and Characterization of a Novel Supramolecular Cluster Compound [(BPE) ₃ (WOS ₃ Cu ₃ Br ₄) ₂]. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 417-419.	0.6	0
84	Syntheses and Crystal Structures of Five Supramolecular Halides/Pseudohalides ([(ZnCl ₄)(bppt)], [(CdCl ₄)(bppt)], [(Cdl ₄)(bppt)], [(Cdl ₄)(bppt)], [(Sppt)], [(Cdl ₄)(bppt)], [(Cdl ₄)(bppt)], [(Sppt)], [(S	verlock 10 0.6	Tf 50 307 To 0
85	Chemistry, 2013, 43, 373-381 Hydrothermal Syntheses, Crystal Structures, and Thermal Gravimetric Analysis (TGA) of Two Inorganic-Organic Hybrid Materials: [bphx][Mo ₆ O ₁₉] and [bphx] ₃ [H ₂ W ₁₂ O ₄₀]·3H ₂ O. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 332-339.	0.6	2
86	Synthesis, Crystal Structure, and Characterization of a Novel Twin-Nest-Shaped Supramolecular Cluster Compound [(BPHEP) ₂ (Mo ₂ O ₂ S ₆ Cu ₆ I ₆)]. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 1264-1266.	0.6	0
87	Three Novel Metal Supramolecular Polymers Directed by 1,2-bis(pyridinium)ethane Cation: Syntheses and Crystal Structures. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 965-971.	0.6	1
88	2,3,3-Trimethyl-1-[4-(2,3,3-trimethyl-3H-indol-1-ium-1-yl)butyl]-3H-indol-1-ium diiodide. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2714-o2714.	0.2	0
89	C-C Oxidative Coupling Reaction of Ethylene-Bridged Azoles via Double C-H Activation With the Catalyst CuX (X = I, Br). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 878-881.	0.6	0
90	Syntheses, Crystal Structures, UV-Vis Absorption, and Fluorescent Properties of a Complex: [btx][Cu ₂ 1 ₄]. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 364-368.	0.6	4

#	Article	IF	CITATIONS
91	External template-assisted self-assembly: design and synthesis of the [MoOS3Cu3]+ based supramolecular polymeric clusters. CrystEngComm, 2012, 14, 3125.	2.6	20
92	Synthesis and Structure of a Supramolecular Coordination Polymer [ZnI2L(CH3OH)(H2O)2]n (L = N-(3-) Tj ETQqO Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 999-1002.	0 0 rgBT 0.6	Overlock 10
93	Role of cooperative templates in the self-assembly process of microporous structures: syntheses and characterization of 12 new silver halide/thiocyanate supramolecular polymers. CrystEngComm, 2012, 14, 3241.	2.6	62
94	The anion exchange reaction of bis(isoquinoline) ionic liquids: self-assembly, crystal structures and thermal properties of ten novel d10 metal (Cu, Ag) halide/thiocyanate supramolecular polymers. CrystEngComm, 2012, 14, 4927.	2.6	36
95	Unprecedented 1/â^ž[î²-Mo8O26]4â^' polymeric chains and four novel organic–inorganic hybrids based on Mo–POMs and azaheterocycles templates. Journal of Solid State Chemistry, 2012, 190, 296-302.	2.9	15
96	Construction and isomeric transformation of polyoxometalates directed by 1,i‰-bis(pyridinium)alkane templates. CrystEngComm, 2011, 13, 5071.	2.6	35
97	Reactivity of Polylodide Toward 1,6-Bis(pyridinium)hexane (bphx): Syntheses and Structures of Two Organic-Inorganic Hybrid Clusters [(bphx) ₃ ·(Pb ₃ 8Br ₄)] and [(bphx) ₂ ·(Cu ₄ 1 ₈)]. Synthesis and Reactivity in Inorganic, Metal	0.6	3
98	Four novel metal coordination polymers directed by 1,1′-dibutyl-4,4′-bipyridinium dibromide (BBP) and their framework dependent luminescent properties. CrystEngComm, 2011, 13, 2571.	2.6	57
99	External Template-Assisted Self-Assembly:Design and Synthesis of 4,4′-bipy-Based Mo(W)/Cu/S Heterothiometallic Polymeric Clusters Directed by 1,1′-Bis(pyridinium)methylene Cation. Crystal Growth and Design, 2011, 11, 3448-3455.	3.0	42
100	Three novel cation-templated metal thiocyanates with 1-2D polypseudorotaxane frameworks. CrystEngComm, 2011, 13, 6885.	2.6	26
101	Syntheses, Crystal Structures, and Fluorescent Properties of Two Cation-induced Complexes: [(CdI4)(BPHX)] and [(Ag2I4)(BPHX)]. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 100-106.	0.6	11
102	Template construction of a series of supramolecular coordination polymers <i>via</i> 6,7-dihydro-5H-[1,4]diazepino[1,2,3,4-lmn][1,10]phenanthroline-4,8-diium cation. Journal of Coordination Chemistry, 2011, 64, 1683-1694.	2.2	4
103	Design and the cation-templated self-assembly on the [MoOS3Cu3]+ based supramolecular polymeric clusters. Inorganic Chemistry Communication, 2011, 14, 1783-1787.	3.9	7
104	2D d10 Metal Assembly Frameworks: Construction of Metal–organic Architecture with Metal Thiocyanate and Dipyridyl Spacer. Journal of Chemical Crystallography, 2011, 41, 533-536.	1.1	2
105	Synthesis and Structure of a Cdl2 Coordination Polymer with 1,1′-(1,4-Butanediyl)bis-1H-benzotriazole(bbbt). Journal of Chemical Crystallography, 2011, 41, 617-620.	1.1	5
106	Preparation and Crystal Structural Study of a Novel Coordinated Polymer [Hgl2(4-bped)2] (bpedÂ=Âbis(4-pyridyl)ethylene diamine). Journal of Chemical Crystallography, 2011, 41, 763-766.	1.1	8
107	1,ï‰-Bis(pyridinium)alkane Cation as Templates for the Self-Assembly of the Mo(W)/S/Cu Polymeric Clusters. Journal of Cluster Science, 2011, 22, 633-646.	3.3	4
108	1,1′-Di-n-butyl-4,4′-bipyridinium 2.375-bromido-1.625-chloridocadmate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m158-m158.	0.2	1

#	Article	IF	Citations
109	4,5-Dihydro-3a,5a-diazoniapyrene triiodidocuprate(I). Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1839-m1839.	0.2	O
110	Syntheses and Crystal Structures of Four Supramolecular Halides/Pseudohalides: [(ZnCl ₄)(BPX)], [(CdCl ₄)(BPX)], [(HgCl ₄)(BPX)], and [Cu ₄ (SCN) ₆ (BPX)] _{<i>n</i>} Directed by 1, 4-Bis(pyridinium)xylol Cations. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 272-278.	0.6	2
111	Synthesis, Crystal Structure, and Characterization of a Novel Coordinated Polymer [Hgl ₂ L] ₂ [L = Ethanediyl bis(isonicotinate)]. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 1014-1017.	0.6	O
112	Self-Assembly, Crystal Structure, and Thermal and Photoluminescent Properties of a Coordination Polymer [Hgl2(3-bpfob)]n. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 1074-1079.	0.6	1
113	Syntheses, Crystal Structures, and Catalytic Activities of Two Inorganic–Organic Hybrid Materials: [py]2[Hpy]3[PMo12O40]·H2O and [btx]2[Mo8O26]·H2O. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 940-948.	0.6	1
114	Syntheses, Structure, and Photoluminescent and Thermal Properties of a Novel Coordination Polymer [Cul(3-bpfob)]n with One-Dimensional Helical Chain. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 1080-1085.	0.6	5
115	Synthesis, Crystal Structure, and Characterization of a Novel Coordinated Polymer [Cu ₂ 1 ₄ (Nppch) ₂]. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 1086-1090.	0.6	1
116	Syntheses, Crystal Structures, and Ultraviolet Properties of a Coordination Polymer [(Ag ₂ 1 ₄)(EV)] _n . Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 949-952.	0.6	3
117	Role of spacers and substituents in the self-assembly process: Syntheses and characterization of two novel thiocyanatocuprates polymers. Inorganic Chemistry Communication, 2010, 13, 1534-1537.	3.9	12
118	1,1′-Methylenedipyridinium dichloride monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1211-o1211.	0.2	3
119	6,7-Dihydro-5H-1,4-diazepino[1,2,3,4-lmn][1,10]phenanthroline-4,8-diium tris(thiocyanato-κN)cuprate(I). Acta Crystallographica Section E: Structure Reports Online, 2010, 66, m1280-m1280.	0.2	0
120	Syntheses, Crystal Structures, and Fluorescent Properties of Two Cation-induced Complexes: [(Cu6I10)(BPB)2] n and [(Ag6I10)(BPB)2] n. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2010, 40, 669-674.	0.6	1
121	Hierarchical Assembly of Extended Coordination Networks Constructed by Novel Metallacalix[4]arenes Building Blocks. Inorganic Chemistry, 2010, 49, 2600-2613.	4.0	86
122	Self-Assembly, Crystal Structure and Thermal Property of a Coordination Polymer [(DDTD)(Cu3I5)]n. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2009, 39, 441-444.	0.6	6
123	Construction of Cerium(III) Supramolecular Compound with 1,5-Bis(pyridinium)pentane. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2009, 39, 175-178.	0.6	2
124	Self-assembly, Crystal Structure and Fluorescent Property of a Coordination Polymer [(Cu4l6)(BPE)]n. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2009, 39, 633-636.	0.6	12
125	1,3-Bis(4-Pyridinylcarbonyl)-2-Imidazolidinethione and Its First Cluster Complex: Synthesis, Crystal Structure and Luminescence Properties. Journal of Chemical Crystallography, 2009, 39, 42-45.	1.1	1
126	Synthesis, Structure and Theoretical Research of a New Triaryl Phosphine Complex [HgCl2(PPh2Bz)2] (PPh2BzÂ=ÂBenzyldiphenylphosphine). Journal of Chemical Crystallography, 2009, 39, 46-50.	1.1	5

#	Article	IF	CITATIONS
127	Synthesis and Structure of a Cdl2 Coordination Polymer with 1,4-Bis(benzimidazole-1-yl-methylene)benzene (bbmb). Journal of Chemical Crystallography, 2009, 39, 147-150.	1.1	10
128	Construction of 1–2D CuI(or CuII) metal–organic architectures with metal thiocyanates and bipyridyl spacers: Syntheses, structures, and thermal properties. Inorganica Chimica Acta, 2009, 362, 556-562.	2.4	5
129	Hydrothermal synthesis, structure and fluorescent property of a novel cuprous thiocyanate inorganic polymer directed by 1,5-bis(pyridinium) pentane cation. Inorganic Chemistry Communication, 2009, 12, 653-656.	3.9	19
130	Synthesis, Structure and Fluorescence Properties of a Coordination Polymer [Cu2(SCN)4(BPX)]n with 1D Ladder-Shaped Structure. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2009, 39, 609-613.	0.6	7
131	Syntheses, crystal structures, and magnetic properties of five new coordination compounds bearing ferrocenedicarboxylate ligands. Journal of Coordination Chemistry, 2009, 62, 3142-3156.	2.2	8
132	Syntheses of Metalâ^'2-(Pyridin-4-yl)-1 <i>H</i> -imidazole-4,5-dicarboxylate Networks with Topological Diversity: Gas Adsorption, Thermal Stability and Fluorescent Emission Properties. Crystal Growth and Design, 2009, 9, 3423-3431.	3.0	169
133	Counteranion's effects on the structures of supramolecular silver coordination compounds of one asymmetric and one biting organic ligands. CrystEngComm, 2009, 11, 1373.	2.6	22
134	Syntheses, Crystal Structures, and Characterizations of Allomerism Complexes of Co(II) and Ni(II) with Pmtpo and NCSa^ (Pmtpo = 2-(2-pyridylmethylthio)-5-(4-pyridyl)-1,3,4-Oxadiazole). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2009, 39, 93-99.	0.6	0
135	Coordination Polymers with the Angular Dipyridyl Ligand 1,3,4-Thiadiazole-2,5-di-3-pyridyl: Influence of Analogue Dipyridyl Ligands and Bridging Anions on Structural Diversity. Crystal Growth and Design, 2008, 8, 1566-1574.	3.0	54
136	A Systematic Design and Facile Construct of Metal Pseudohalide Frameworks Directed By 1,ï%-Bis(pyridinium)alkane Cations. Crystal Growth and Design, 2008, 8, 2393-2401.	3.0	66
137	Two cadmium(II) 1-D coordination polymers, $\{[Cd2(\hat{l}/4-Cl)4Cl2(CH3OH)(H2O)] \hat{A}\cdot (H-aql)2\}$ n and $[Cd(\hat{l}/4-Cl)2(aql)]$ n: synthesis, crystal structures and fluorescent properties. Journal of Coordination Chemistry, 2008, 61, 1997-2007.	2.2	7
138	Synthesis, Crystal Structure and Properties of the Enantiotopic Complex Constructed From Chiral Ligand H ₂ bpb, [Co (H ₂ bpb) ₂ (NCS) ₂ (CH ₃ OH) ₂) (H ₂ bpb = 1, 2-Bis (3-pyridylcarboxamide)benzene). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2008, 38, 439-444.	0.6	1
139	Synthesis, Crystal Structure, and Properties of the Enantiotopic Complex Constructed from Chiral Ligand H ₂ bpb, [Co (H ₂ bpb) ₂ (NCS) ₂ (CH ₃ OH) ₂] (H ₂ bpb = 1, 2-Bis (3-Pyridylcarboxamide)Benzene). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2008, 38, 539-544.	0.6	3
140	Synthesis, crystal structure and characterization of a 1D chain coordination polymer of zinc(II) with aroylamide, [Zn(H2bpb)Cl2] n \hat{A} · CH3OH, (H2bpb = 1,2- bis (3-pyridylcarboxamide)benzene). Journal of Coordination Chemistry, 2008, 61, 285-293.	2.2	7
141	Synthesis, Crystal Structure and Characterizations of Zn (II) Complex with pmtpo and NCSâ ⁻ (Pmtpo =) Tj ETQq1 Organic, and Nano Metal Chemistry, 2008, 38, 716-720.	1 0.78431 0.6	14 rgBT /Ove 2
142	Adaptable metal cluster block: Facile construction of photoluminescent Cul coordination polymeric clusters with metal (I) iodides. Journal of Molecular Structure, 2007, 827, 195-200.	3.6	17
143	Ethylenedipyridinium dibromidodichloridocadmate(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1780-m1780.	0.2	1
144	1,1′-(Propane-1,3-diyl)dipyridinium dibromidodichloridocadmate(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1781-m1781.	0.2	1

#	Article	IF	CITATIONS
145	1,1′-(Ethane-1,2-diyl)dipyridinium dibromidodichloridomercurate(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1892-m1892.	0.2	2
146	1,1′-(Propane-1,3-diyl)dipyridinium dibromidodiiodidomercurate(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1893-m1893.	0.2	0
147	1,1′-(Butane-1,4-diyl)dipyridinium bromidotrichloridomercurate(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1894-m1894.	0.2	1
148	1,1′-(Butane-1,4-diyl)dipyridinium dibromidodiiodidomercurate(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1895-m1895.	0.2	0
149	1,1′-(p-Phenylenedimethylene)dipyridinium trichloridoiodidomercurate(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1896-m1896.	0.2	1
150	1,1′-(1,4-Phenylenedimethylene)dipyridinium bis(tetraphenylborate). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3457-o3457.	0.2	2
151	1,1′-[1,4-Phenylenebis(methylene)]dipyridinium hexacyanidoferrate(II) octahydrate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m2517-m2517.	0.2	2
152	Bis(5,8-diazoniadispiro[4.2.4.2]tetradecane) hexakis(thiocyanato-κN)manganate(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m2568-m2568.	0.2	0
153	Synthesis, Crystal Structure, and Optical Limiting Effect of a Cu(l) Coordination Polymeric Cluster Bridged by Chiral-carbon Skeleton Bipyridyl Ligand. Chemistry Letters, 2006, 35, 650-651.	1.3	1
154	Tetrakis(benzyldiphenylphosphine-κP)tetra-ν2-sulfido-dicopper(I)molybdenum(VI) tetrahydrate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m939-m941.	0.2	0
155	2,5-Bis(3,7-dichloroquinolin-8-yl)-1,3,4-oxadiazole. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o2594-o2595.	0.2	1
156	Three-dimensional molecular network, [{Cu(dps)2(SO4)}·3H2O·DMF]n, and its different third-order NLO performance (dps=4,4′-dipyridyl sulfide). Journal of Solid State Chemistry, 2006, 179, 4003-4010.	2.9	23
157	Synthesis and structure of a Hgl2 coordination polymer with novel rigid N-donor ligand. Journal of Chemical Crystallography, 2006, 36, 643-646.	1.1	3
158	The synthesis and crystal structure of a new coordination polymeric adduct containing mercury iodide. Journal of Chemical Crystallography, 2006, 36, 679-684.	1.1	4
159	Reactivity of polyiodide toward 1, 3-bis(4-pyridyl)propane (bpp): synthesis and structure of an organic-inorganic hybrid compound [(CuI2)2(N,N′-dimethyl-bpp)] n. Journal of Chemical Crystallography, 2006, 36, 685-689.	1.1	4
160	Reactivity of Polyiodides Towards 1,3-Bis(4-pyridyl)propane (bpp): A New Cul Cluster Polycatenane Framework and a Novel 2D Agl Cluster Motif. European Journal of Inorganic Chemistry, 2006, 2006, 2259-2267.	2.0	43
161	The syntheses, crystal structures and optical limiting effects of transition metal adducts bridged by bipyridyl-based ligands. Inorganic Chemistry Communication, 2005, 8, 495-499.	3.9	11
162	catena-Poly[N-[4-(1H-benzimidazol-3-yl)butyl]benzimidazolium [[diiodobismuthate(III)]-di-μ2-iodo]]. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m2534-m2535.	0.2	3

#	Article	IF	CITATIONS
163	catena-Poly[[diiodocadmium(II)]-μ-1,4-bis(1,2,4-triazol-1-ylmethyl)benzene-ΰ2N4:N4′]. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m2536-m2537.	³ 0.2	0
164	2,3-Di-4-pyridylbutane-2,3-diol. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o4303-o4304.	0.2	1
165	catena-Poly[4,4′-bipyridinium(+) [argentate(I)-di-μ-iodo]]. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m2736-m2737.	0.2	1
166	Synthesis, Structure, and Large Optical Limiting Effect of the First Coordination Polymeric Cluster Based on an {I@[Agl(inh)]6} Hexagram Block. Inorganic Chemistry, 2005, 44, 2553-2559.	4.0	76
167	Heterothiometallic polymeric clusters. Coordination Chemistry Reviews, 2004, 248, 169-183.	18.8	143
168	The synthesis, crystal structure and optical limiting properties of ZnI2-pyrazine adduct polymer linked by iodineâ <iodine 2004,="" 689,="" 69-74.<="" interaction.="" journal="" molecular="" of="" soft–soft="" structure,="" supramolecular="" td=""><td>3.6</td><td>15</td></iodine>	3.6	15
169	Nonlinear polymeric effect: synthesis, crystal structure and nonlinear optical properties of a new mercury iodide adduct polymer [Hg(bpfb)I 2] n · 2DMF (bpfb= N , N ′ -bis(4-pyridyl) Tj ETQq1 1 0.784314 rgB	T3 . © verlo	cks10 Tf 50
170	Self-Assembly of d10Metal Adduct Polymers Bridged by Bipyridyl-Based Ligands. Journal of Cluster Science, 2003, 14, 483-493.	3.3	25
171	The syntheses, crystal structures and optical limiting effects of HgI2 adduct polymers bridged by bipyridyl-based ligands. Inorganica Chimica Acta, 2003, 355, 151-156.	2.4	27
172	Synthesis, Structural Characterization of a Novel 4,4′â€Bipyridyl Based HgI2Adduct. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2003, 33, 1-10.	1.8	13
173	Reactivity of the [MoS4Cu6Br8]4– anion toward polyarylphosphorus ligands: synthesis, characterization and nonlinear optical properties of [MoS4(Cudppf)2]·2DMF·CH3CN and [MoS4Cu2(Ph2PPy)4]. Dalton Transactions RSC, 2002, , 1980-1984.	2.3	24
174	Synthesis, Structure and Nonlinear Optical Properties of a Novel Cluster Compound Containing 1,1′-Bis(diphenylphosphino)ferrocene(dppf). Chemistry Letters, 2002, 31, 508-509.	1.3	17
175	A Mercury Iodide Adduct with 1,1-Bis(diphenylphosphino)ferrocene - Synthesis, Crystal Structure, and Nonlinear Refractive Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2002, 628, 179-182.	1.2	12
176	Synthesis, crystal structures and magnetic properties of helical double-stranded three-dimensional network [Co(NO3)2(bpt)2 \hat{A} -2CH3OH]n and two-dimensional network [Mn(NCS)2(bpt)3 \hat{A} -H2O]n (bpt=N,N \hat{a} -bis(3-pyridylmethyl)thiourea). Inorganica Chimica Acta, 2002, 332, 216-222.	2.4	14
177	Solid-state syntheses of M–Cu–S (M=Mo and W) clusters, crystal structure and non-linear optical properties of {MS4[Cu(p-MeOC6H4)3P]2}·0.5C6H12. Inorganica Chimica Acta, 2002, 340, 29-34.	2.4	9
178	Synthesis of a 2D polymeric cluster {[NEt4][Mo2O2S6Cu6I3(4,4′-bipy)5]·MeOH·H2O}n with a significant improvement of optical limiting effect. Chemical Communications, 2001, , 1126-1127.	4.1	69
179	A novel Hgl2 adduct with an azopyridine ligand: synthesis, structure and optical refractive effect of [Hgl2(4,4 \hat{a} \in 2-azopyridine)]n. CrystEngComm, 2001, 3, 152-154.	2.6	13
180	The first heterothiometallic complex of bis(diphenylthiophosphoryl)amide [(Ph2PS)2N]-: synthesis, crystal structure and nonlinear optical effects of the dodecanuclear cluster compound (Et4N)4[Mo4Cu8O4S12{(Ph2PS)2N}4]. New Journal of Chemistry, 2001, 25, 945-948.	2.8	31

#	Article	IF	CITATION
181	Synthesis, Structure and Optical Refractive Effect of Dibutyltin(IV) Complex of [Ph2P(S)NP(S)Ph2]â^. Chemistry Letters, 2001, 30, 1004-1005.	1.3	2
182	FORMYLFERROCENYL-3-METHOXY-2-NAPHTHOYLHYDRAZONE AND ITS TRANSITION METAL COMPLEXES. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2001, 31, 829-836.	1.8	3
183	catena-Poly[[bis(thiocyanato-N)lead(II)]-ι/4-1,2-bis(4-pyridyl)ethane-N:N′]. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 526-527.	0.4	3
184	A linear piperazine–pyridine ligand and its Hg coordination polymer. Inorganic Chemistry Communication, 2001, 4, 358-361.	3.9	84
185	Third-order nonlinear optical properties of three Mn(II)-4,4′-bpy coordination polymers and crystal structure of three-dimensional network [Mn(SO4)(4,4′-bpy)(H2O)2]n. Inorganica Chimica Acta, 2001, 319, 212-218.	2.4	66