
Peter Polgar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6755779/publications.pdf Version: 2024-02-01

DETED DOLCAD

#	Article	IF	CITATIONS
1	CDC2 Is an Important Driver of Vascular Smooth Muscle Cell Proliferation via FOXM1 and PLK1 in Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 2021, 22, 6943.	1.8	12
2	Participation of PLK1 and FOXM1 in the hyperplastic proliferation of pulmonary artery smooth muscle cells in pulmonary arterial hypertension. PLoS ONE, 2019, 14, e0221728.	1.1	11
3	Unraveling endothelin-1 induced hypercontractility of human pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. PLoS ONE, 2018, 13, e0195780.	1.1	14
4	Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L1199-L1205.	1.3	37
5	DNA Microarray and Signal Transduction Analysis in Pulmonary Artery Smooth Muscle Cells From Heritable and Idiopathic Pulmonary Arterial Hypertension Subjects. Journal of Cellular Biochemistry, 2015, 116, 386-397.	1.2	23
6	Protein expression by human pulmonary artery smooth muscle cells containing a BMPR2 mutation and the action of ET-1 as determined by proteomic mass spectrometry. International Journal of Mass Spectrometry, 2015, 378, 347-359.	0.7	19
7	Targeting Receptor Tyrosine Kinases and Their Downstream Signaling with Cellâ€Penetrating Peptides in Human Pulmonary Artery Smooth Muscle and Endothelial Cells. Chemical Biology and Drug Design, 2015, 85, 586-597.	1.5	13
8	Hyperplastic Growth of Pulmonary Artery Smooth Muscle Cells from Subjects with Pulmonary Arterial Hypertension Is Activated through JNK and p38 MAPK. PLoS ONE, 2015, 10, e0123662.	1.1	36
9	Modulating the dysregulated migration of pulmonary arterial hypertensive smooth muscle cells with motif mimicking cell permeable peptides. Current Topics in Peptide and Protein Research, 2015, 16, 1-17.	1.0	5
10	Altered expression and signal transduction of endothelinâ€1 receptors in heritable and idiopathic pulmonary arterial hypertension. Journal of Cellular Physiology, 2013, 228, 322-329.	2.0	27
11	Câ€ŧerminus of ET <scp>_A</scp> /ET _B receptors regulate endothelinâ€1 signal transmission. Journal of Peptide Science, 2013, 19, 257-262.	0.8	8
12	A Cell Permeable Peptide Targeting the Intracellular Loop 2 of Endothelin B Receptor Reduces Pulmonary Hypertension in a Hypoxic Rat Model. PLoS ONE, 2013, 8, e81309.	1.1	14
13	Enhancing and Limiting Endothelinâ€1 Signaling with a Cellâ€penetrating Peptide Mimicking the Third Intracellular Loop of the ETB Receptor. Chemical Biology and Drug Design, 2012, 80, 374-381.	1.5	6
14	Endothelin-1 activation of ETB receptors leads to a reduced cellular proliferative rate and an increased cellular footprint. Experimental Cell Research, 2012, 318, 1125-1133.	1.2	12
15	Transgenic expression of an altered angiotensin type I AT1 receptor resulting in marked modulation of vascular type I collagen. Journal of Cellular Physiology, 2012, 227, 2013-2021.	2.0	2
16	Limiting angiotensin II signaling with a cellâ€penetrating peptide mimicking the second intracellular loop of the angiotensin II typeâ€l receptor. Chemical Biology and Drug Design, 2010, 76, 70-76.	1.5	13
17	Strategic Plan for Lung Vascular Research. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1554-1562.	2.5	73
18	Activation of ERK, JNK, Akt, and G-protein coupled signaling by hybrid angiotensin II AT1/bradykinin B2 receptors expressed in HEK-293 cells. Journal of Cellular Biochemistry, 2007, 101, 192-204.	1.2	12

Peter Polgar

#	Article	IF	CITATIONS
19	Angiotensin II type 1 and bradykinin B2 receptors expressed in early stage epithelial cells derived from human embryonic stem cells. Journal of Cellular Physiology, 2007, 211, 816-825.	2.0	14
20	Modulation by bradykinin of angiotensin type 1 receptor-evoked RhoA activation of connective tissue growth factor expression in human lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L1291-L1299.	1.3	9
21	Bradykinin B2 receptor signaling: Structural and functional characterization of the C-terminus. Biopolymers, 2005, 80, 367-373.	1.2	19
22	Coulombic and Hydrophobic Interactions in the First Intracellular Loop Are Vital for Bradykinin B2 Receptor Ligand Binding and Consequent Signal Transduction. Biochemistry, 2005, 44, 5295-5306.	1.2	9
23	K317, R319, and E320 within the proximal C-terminus of the bradykinin B2 receptor form a motif important for phospholipase C and phospholipase A2 but not connective tissue growth factor related signaling. Journal of Cellular Biochemistry, 2004, 92, 547-559.	1.2	6
24	Chimeric exchanges within the bradykinin B2 receptor intracellular face with the prostaglandin EP2 receptor as the donor: importance of the second intracellular loop for cAMP synthesis. Archives of Biochemistry and Biophysics, 2003, 415, 54-62.	1.4	6
25	Role of prostaglandin E2 EP receptors and cAMP in the expression of connective tissue growth factor. Archives of Biochemistry and Biophysics, 2002, 404, 302-308.	1.4	31
26	Hybrid formation between the intracellular faces of the bradykinin B2 and angiotensin II AT1 receptors and signal transduction. International Immunopharmacology, 2002, 2, 1807-1822.	1.7	12
27	Structural insight into the role of the second intracellular loop of the bradykinin 2 receptor in signaling and internalization. Biopolymers, 2002, 63, 239-246.	1.2	14
28	Global chimeric exchanges within the intracellular face of the bradykinin B2 receptor with corresponding angiotensin II type la receptor regions: Generation of fully functional hybrids showing characteristic signaling of the AT1a receptor. Journal of Cellular Biochemistry, 2002, 85, 809-819.	1.2	16
29	Mechanisms regulating the expression, self-maintenance, and signaling-function of the bradykinin B2 and B1 receptors. Journal of Cellular Physiology, 2002, 193, 275-286.	2.0	152
30	Mediator caused induction of a human bradykinin B1 receptor minigene: Participation of c-Jun in the process. Journal of Cellular Biochemistry, 2001, 82, 163-170.	1.2	13
31	p53 down-regulates human bradykinin B1 receptor gene expression. Journal of Cellular Biochemistry, 2001, 82, 38-45.	1.2	9
32	Role of hydroxyl containing residues in the intracellular region of rat bradykinin B2 receptor in signal transduction, receptor internalization, and resensitization. Journal of Cellular Biochemistry, 2001, 83, 435-447.	1.2	11
33	Regulation of inducible bradykinin B1 receptor gene expression through absence of internalization and resensitization. Journal of Cellular Biochemistry, 2000, 78, 351-362.	1.2	34
34	Posttranscriptional Destabilization of the Bradykinin B1 Receptor Messenger RNA: Cloning and Functional Characterization of the 3′-Untranslated Region. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 1999, 1, 29-35.	1.7	17
35	Effect of the G-Protein, Gαi2, and Gαi3 Subunit Knockdown on Bradykinin-Induced Signal Transduction in Rat-1 Cells. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 1999, 1, 227-236.	1.7	9
36	Mechanisms in the Transcriptional Regulation of Bradykinin B1 Receptor Gene Expression. Journal of Biological Chemistry, 1998, 273, 10763-10770.	1.6	25

PETER POLGAR

#	Article	IF	CITATIONS
37	Motif Mutation of Bradykinin B2 Receptor Second Intracellular Loop and Proximal C Terminus Is Critical for Signal Transduction, Internalization, and Resensitization. Journal of Biological Chemistry, 1998, 273, 33548-33555.	1.6	42
38	Roles for interleukin-1β, phorbol ester and a post-transcriptional regulator in the control of bradykinin B1 receptor gene expression. Biochemical Journal, 1998, 330, 361-366.	1.7	55
39	Effects of Intracellular Tyrosine Residue Mutation and Carboxyl Terminus Truncation on Signal Transduction and Internalization of the Rat Bradykinin B2 Receptor. Journal of Biological Chemistry, 1997, 272, 14638-14642.	1.6	56
40	Enhanced bradykinin-stimulated phospholipase C activity in murine embryonic stem cells lacking the G-protein αq-subunit. Biochemical Journal, 1997, 327, 803-809.	1.7	15
41	Characterization of human cyclooxygenase 2 gene promoter localization of a TGF-β response element. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1350, 287-292.	2.4	38
42	Genomic Structure of the Human Bradykinin B1Receptor Gene and Preliminary Characterization of Its Regulatory Regions. Biochemical and Biophysical Research Communications, 1996, 222, 718-725.	1.0	31
43	Regulation of lysyl oxidase and cyclooxygenase expression in human lung fibroblasts: interactions among TGF-β, IL-1β, and prostaglandin E. Journal of Cellular Biochemistry, 1996, 62, 411-417.	1.2	75
44	Regulation of lysyl oxidase and cyclooxygenase expression in human lung fibroblasts: interactions among TGF-beta, IL-1 beta, and prostaglandin E. Journal of Cellular Biochemistry, 1996, 62, 411-7.	1.2	24
45	Regulation of lysyl oxidase and cyclooxygenase expression in human lung fibroblasts: interactions among TGFâ€Î², ILâ€1β, and prostaglandin E. Journal of Cellular Biochemistry, 1996, 62, 411-417.	1.2	1
46	Interactions of bradykinin, calcium, G-protein and protein kinase in the activation of phospholipase A2 in bovine pulmonary artery endothelial cells. Agents and Actions, 1993, 40, 110-118.	0.7	19
47	Functional expression of the bradykinin-B2 receptor cDNA in Chinese hamster lung CCL39 fibroblasts. Biochemical and Biophysical Research Communications, 1992, 188, 786-793.	1.0	20
48	Radiation, Lipid Peroxidation and the Role of Oxygen Radicals in Eicosanoid Metabolism. , 1988, , 119-131.		3
49	A Review: Prostaglandins, Aging, and Blood Vessels. Journal of the American Geriatrics Society, 1987, 35, 239-247.	1.3	24
50	The effect of bovine serum albumin on the synthesis of prostaglandin and incorporation of [3H]acetate into platelet-activating factor. Archives of Biochemistry and Biophysics, 1987, 257, 251-258.	1.4	19
51	Prostaglandin synthesis by cells comprising the calf pulmonary artery. Journal of Cellular Physiology, 1984, 120, 163-168.	2.0	32
52	Effect of prolonged prostaglandin exposure on prostaglandin synthesis by human lung fibroblasts. Prostaglandins, 1984, 28, 717-729.	1.2	9
53	The influence of gamma radiation on arachidonic acid release and prostacyclin synthesis. Prostaglandins, 1983, 25, 783-791.	1.2	51
54	Prostaglandin production and cellular aging. Mechanisms of Ageing and Development, 1981, 16, 311-317.	2.2	13

PETER POLGAR

#	Article	IF	CITATIONS
55	Cell growth and the regulation of prostaglandin synthesis. Prostaglandins, 1981, 22, 723-728.	1.2	33
56	Alterations in prostaglandin synthesis during senescence of human lung fibroblasts. Mechanisms of Ageing and Development, 1980, 12, 305-310.	2.2	24
57	Stimulation of prostaglandin synthesis by ascorbic acid via hydrogen peroxide formation. Prostaglandins, 1980, 19, 693-700.	1.2	70
58	Prostaglandin production by type II alveolar epithelial cells. Lipids and Lipid Metabolism, 1979, 572, 502-509.	2.6	57
59	Unsaturated fatty acid effect on cyclic amp levels in human embryo lung fibroblasts. Prostaglandins, 1979, 18, 43-52.	1.2	13
60	Plasma membrane associated metabolic parameters and the aging of human diploid fibroblasts. Mechanisms of Ageing and Development, 1978, 7, 151-160.	2.2	31
61	Self regulation of growth by human diploid fibroblasts via prostaglandin production. FEBS Letters, 1977, 79, 69-72.	1.3	58
62	The role of adenosine 3â€2:5â€2-cyclic monophosphate in the division of WI 38 cells. The cellular response to prostaglandin E1 and the effects of an cyclic adenosine 3â€2:5â€2-cyclic monophosphate analogue and prostaglandin E1 on cell division. Biochemical Journal, 1974, 142, 339-344	3.2	33

prostaglandin E1 on cell division. Biochémical Journal, 1974, 142, 339-344.