Jian Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6755609/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improve the Hole Size–Dependent Refractive Index Sensitivity of Au–Ag Nanocages by Tuning the Alloy Composition. Plasmonics, 2022, 17, 597-612.	3.4	5
2	Plasmonic refractive index sensitivity of tetrapod gold nanostars: tuning the branch length and protein layer. European Physical Journal D, 2022, 76, 1.	1.3	1
3	A plasmonic ELISA for multi-colorimetric sensing of C-reactive protein by using shell dependent etching of Ag coated Au nanobipyramids. Analytica Chimica Acta, 2022, 1221, 340129.	5.4	9
4	Gold nanoring core-shell satellites with abundant built-in hotspots and great analyte penetration: An immunoassay platform for the SERS/fluorescence-based detection of carcinoembryonic antigen. Chemical Engineering Journal, 2021, 409, 128173.	12.7	25
5	Selective controlling transverse plasmon spectrum of pentagonal gold nanotube: from visible to near-infrared region. Nanotechnology, 2021, 32, 445202.	2.6	1
6	Heterodimers of metal nanoparticles: synthesis, properties, and biological applications. Mikrochimica Acta, 2021, 188, 345.	5.0	8
7	Gold nanotubes: synthesis, properties and biomedical applications. Mikrochimica Acta, 2020, 187, 612.	5.0	25
8	Detection of ferrous ion by etching-based multi-colorimetric sensing of gold nanobipyramids. Nanotechnology, 2020, 31, 335505.	2.6	11
9	Colorimetric determination and recycling of Hg2+ based on etching-induced morphology transformation from hollow AuAg nanocages to nanoboxes. Journal of Alloys and Compounds, 2020, 828, 154392.	5.5	15
10	A SERS-based immunoassay for the detection of α-fetoprotein using AuNS@Ag@SiO ₂ core–shell nanostars. Journal of Materials Chemistry C, 2019, 7, 8432-8441.	5.5	35
11	Switching the plasmon coupling of fractional hollow AuAg nanobox by asymmetrical etching of the inner Ag core. Journal Physics D: Applied Physics, 2019, 52, 255301.	2.8	6
12	SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating. Journal of Materials Chemistry C, 2019, 7, 3322-3334.	5.5	38
13	Tuning the surface enhanced Raman scattering performance of anisotropic Au coreâ^'Ag shell hetero-nanostructure: The effect of core geometry. Journal of Alloys and Compounds, 2019, 776, 934-947.	5.5	23
14	Creating Orientation-Independent Built-In Hot Spots in Gold Nanoframe with Multi-Breakages. Plasmonics, 2019, 14, 1131-1143.	3.4	7
15	Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO ₂ Core–Shell Nanostructures Used for an Ultrasensitive SERS Immunoassay of Alpha-Fetoprotein. ACS Applied Materials & Interfaces, 2019, 11, 3617-3626.	8.0	72
16	Local dielectric environment-dependent plasmonic optical sensitivity of gold nanocage: from nanobox to nanoframe. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	16
17	Modification-free colorimetric and visual detection of Hg2+ based on the etching from core-shell structural Au-Ag nanorods to nanorices. Sensors and Actuators B: Chemical, 2018, 267, 181-190.	7.8	38
18	Colorimetric determination of Hg(II) by combining the etching and aggregation effect of cysteine-modified Au-Ag core-shell nanorods. Sensors and Actuators B: Chemical, 2018, 255, 2927-2935.	7.8	46

Jian Zhu

#	Article	IF	CITATIONS
19	A colorimetric/SERS dual-mode sensing method for the detection of mercury(<scp>ii</scp>) based on rhodanine-stabilized gold nanobipyramids. Journal of Materials Chemistry C, 2018, 6, 12283-12293.	5.5	42
20	Synthesis of dual-functional Ag/Au nanoparticles based on the decreased cavitating rate under alkaline conditions and the colorimetric detection of mercury(<scp>ii</scp>) and lead(<scp>ii</scp>). Journal of Materials Chemistry C, 2018, 6, 7557-7567.	5.5	13
21	Fluorescence turn-on sensing of trace cadmium ions based on EDTA-etched CdTe@CdS quantum dot. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 119-127.	3.9	28
22	Enlarge the biologic coating-induced absorbance enhancement of Au-Ag bimetallic nanoshells by tuning the metal composition. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 189, 571-577.	3.9	17
23	Synthesis of colloidal gold nanobones with tunable negative curvatures at end surface and their application in SERS. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	14
24	Specific Detection of Carcinoembryonic Antigen Based on Fluorescence Quenching of Hollow Porous Gold Nanoshells with Roughened Surface. ACS Applied Materials & Interfaces, 2017, 9, 36632-36641.	8.0	40
25	Multi-branch Au/Ag bimetallic core–shell–satellite nanoparticles as a versatile SERS substrate: the effect of Au branches in a mesoporous silica interlayer. Journal of Materials Chemistry C, 2017, 5, 12678-12687.	5.5	34
26	Multi-mode optical detection of iodide based on the etching of silver-coated gold nanobipyramids. Sensors and Actuators B: Chemical, 2017, 253, 612-620.	7.8	31
27	Focus and enlarge the enhancement region of local electric field by overlapping Ag triangular nanoplates. EPJ Applied Physics, 2016, 73, 10501.	0.7	4
28	Detecting glucose by using the Raman scattering of oxidized ascorbic acid: The effect of graphene oxide–gold nanorod hybrid. Sensors and Actuators B: Chemical, 2016, 235, 663-669.	7.8	27
29	Highly improved synthesis of gold nanobipyramids by tuning the concentration of hydrochloric acid. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	16
30	Improve the Plasmonic Spectral Detection of Alpha-Fetoprotein: the Effect of Branch Length on the Coagulation of Gold Nanostars. Plasmonics, 2016, 11, 1175-1182.	3.4	6
31	Improve the surface enhanced Raman scattering of gold nanorods decorated graphene oxide: The effect of CTAB on the electronic transition. Applied Surface Science, 2015, 347, 856-860.	6.1	42
32	Tuning the shell thickness-dependent plasmonic absorption of Ag coated Au nanocubes: The effect of synthesis temperature. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 199, 113-120.	3.5	18
33	The Study of Surface Plasmon Resonance in Au-Ag-Au Three-Layered Bimetallic Nanoshell: The Effect of Separate Ag Layer. Plasmonics, 2014, 9, 435-441.	3.4	18
34	Negative curvature dependent plasmonic coupling and local field enhancement of crescent silver nanostructure. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	12
35	Optimization of Three-Layered Au–Ag Bimetallic Nanoshells for Triple-Bands Surface Plasmon Resonance. Journal of Physical Chemistry C, 2012, 116, 11734-11740.	3.1	40
36	Sectional area-dependent plasmonic shifting in the truncated process of silver nanoparticles: from cube to octahedron. Journal of Nanoparticle Research, 2011, 13, 6305-6312.	1.9	9

Jian Zhu

#	Article	IF	CITATIONS
37	Improve the refractive index sensitivity of gold nanotube by reducing the restoring force of localized surface plasmon resonance. Sensors and Actuators B: Chemical, 2011, 155, 843-847.	7.8	37
38	Calculation of curvature dependent surface plasmon resonance in gold nanospheroid and nanoshell. Journal of Nanoparticle Research, 2009, 11, 785-792.	1.9	10
39	Surface Plasmon Resonance from Bimetallic Interface in Au–Ag Core–Shell Structure Nanowires. Nanoscale Research Letters, 2009, 4, 977-981.	5.7	71
40	Tunable optical limiting of gold nanorod thin films. Applied Physics A: Materials Science and Processing, 2009, 97, 431-436.	2.3	13
41	Wall thickness dependent double optical bistability in gold nanotube: A physical mechanism based on local field enhancement. Journal of Applied Physics, 2009, 105, .	2.5	14
42	Composition-Dependent Plasmon Shift in Auâ^'Ag Alloy Nanotubes: Effect of Local Field Distribution. Journal of Physical Chemistry C, 2009, 113, 3164-3167.	3.1	31
43	Local environment dependent linewidth of plasmon absorption in gold nanoshell: Effects of local field polarization. Applied Physics Letters, 2008, 92, .	3.3	24
44	Ellipsoidal Core–Shell Dielectric-Gold Nanostructure: Theoretical Study of the Tunable Surface Plasmon Resonance. Journal of Nanoscience and Nanotechnology, 2007, 7, 1059-1064.	0.9	19
45	Theoretical study of the light scattering from gold nanotubes: Effects of wall thickness. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 454-455, 685-689.	5.6	47
46	Simulation of the surrounding medium controlled local field enhancement for silver nanorods. Chemical Physics, 2006, 323, 446-450.	1.9	7