Caroline Grönwall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6755513/publications.pdf

Version: 2024-02-01

34 papers

1,544 citations

448610 19 h-index 30 g-index

34 all docs

34 docs citations

times ranked

34

2063 citing authors

#	Article	IF	CITATIONS
1	Rheumatoid Factor and Anti–Modified Protein Antibody Reactivities Converge on IgG Epitopes. Arthritis and Rheumatology, 2022, 74, 984-991.	2.9	5
2	KiiM retreat 2021: Local immunology to fit global need?. Scandinavian Journal of Immunology, 2022, , e13161.	1.3	O
3	Antibody-induced pain-like behavior and bone erosion: links to subclinical inflammation, osteoclast activity, and acid-sensing ion channel 3–dependent sensitization. Pain, 2022, 163, 1542-1559.	2.0	21
4	Antibodies to a Citrullinated Porphyromonas gingivalis Epitope Are Increased in Early Rheumatoid Arthritis, and Can Be Produced by Gingival Tissue B Cells: Implications for a Bacterial Origin in RA Etiology. Frontiers in Immunology, 2022, 13, 804822.	2.2	11
5	Identifying novel B-cell targets for chronic inflammatory autoimmune disease by screening of chemical probes in a patient-derived cell assay. Translational Research, 2021, 229, 69-82.	2.2	1
6	<i>HLA–B*08</i> Identified as the Most Prominently Associated Major Histocompatibility Complex Locus for Anti–Carbamylated Protein Antibody–Positive/Anti–Cyclic Citrullinated Peptide–Negative Rheumatoid Arthritis. Arthritis and Rheumatology, 2021, 73, 963-969.	2.9	12
7	A Comprehensive Evaluation of the Relationship Between Different IgG and IgA Anti-Modified Protein Autoantibodies in Rheumatoid Arthritis. Frontiers in Immunology, 2021, 12, 627986.	2.2	23
8	New technologies laying a foundation for next generation clinical serology. EBioMedicine, 2021, 72, 103585.	2.7	О
9	Different Hierarchies of Anti–Modified Protein Autoantibody Reactivities in Rheumatoid Arthritis. Arthritis and Rheumatology, 2020, 72, 1643-1657.	2.9	56
10	Differential ACPA Binding to Nuclear Antigens Reveals a PAD-Independent Pathway and a Distinct Subset of Acetylation Cross-Reactive Autoantibodies in Rheumatoid Arthritis. Frontiers in Immunology, 2019, 9, 3033.	2.2	43
11	Serum Axl predicts histology-based response to induction therapy and long-term renal outcome in lupus nephritis. PLoS ONE, 2019, 14, e0212068.	1.1	14
12	SAT0030â€CITRULLINE-REACTIVE B CELLS ARE PRESENT IN INFLAMED GINGIVAL TISSUE AND DISPLAY CROSS-REACTIVITY BETWEEN BACTERIAL AND HUMAN ANTIGENS. , 2019, , .		O
13	Anticitrullinated protein antibodies facilitate migration of synovial tissue-derived fibroblasts. Annals of the Rheumatic Diseases, 2019, 78, 1621-1631.	0.5	49
14	Rheumatoid arthritis patients display B-cell dysregulation already in the naÃ-ve repertoire consistent with defects in B-cell tolerance. Scientific Reports, 2019, 9, 19995.	1.6	44
15	Recognition of Amino Acid Motifs, Rather Than Specific Proteins, by Human Plasma Cell–Derived Monoclonal Antibodies to Posttranslationally Modified Proteins in Rheumatoid Arthritis. Arthritis and Rheumatology, 2019, 71, 196-209.	2.9	99
16	A Refined Protocol for Identifying Citrulline-specific Monoclonal Antibodies from Single Human B Cells from Rheumatoid Arthritis Patient Material. Bio-protocol, 2019, 9, e3347.	0.2	14
17	Variable domain Nâ€inked glycosylation and negative surface charge are key features of monoclonal ACPA: Implications for Bâ€cell selection. European Journal of Immunology, 2018, 48, 1030-1045.	1.6	41
18	The parallel worlds of ACPA-positive and RF-positive B cells. Nature Reviews Rheumatology, 2018, 14, 626-628.	3.5	11

#	Article	IF	CITATIONS
19	Autoimmune reactivity to malondialdehyde adducts in systemic lupus erythematosus is associated with disease activity and nephritis. Arthritis Research and Therapy, 2018, 20, 36.	1.6	20
20	Persistence of Diseaseâ€Associated Anti–Citrullinated Protein Antibody–Expressing Memory B Cells in Rheumatoid Arthritis in Clinical Remission. Arthritis and Rheumatology, 2017, 69, 1176-1186.	2.9	34
21	Immunoglobulin characteristics and RNAseq data of FcRL4+ B cells sorted from synovial fluid and tissue of patients with rheumatoid arthritis. Data in Brief, 2017, 13, 356-370.	0.5	3
22	B cells expressing the IgA receptor FcRL4 participate in the autoimmune response in patients with rheumatoid arthritis. Journal of Autoimmunity, 2017, 81, 34-43.	3.0	59
23	Depressed serum IgM levels in SLE are restricted to defined subgroups. Clinical Immunology, 2017, 183, 304-315.	1.4	22
24	Autoreactivity to malondialdehyde-modifications in rheumatoid arthritis is linked to disease activity and synovial pathogenesis. Journal of Autoimmunity, 2017, 84, 29-45.	3.0	48
25	Modulation of natural IgM autoantibodies to oxidative stress-related neo-epitopes on apoptotic cells in newborns of mothers with anti-Ro autoimmunity. Journal of Autoimmunity, 2016, 73, 30-41.	3.0	10
26	Relation of carotid plaque with natural IgM antibodies in patients with systemic lupus erythematosus. Clinical Immunology, 2014, 153, 1-7.	1.4	36
27	Natural IgM: Beneficial Autoantibodies for the Control of Inflammatory and Autoimmune Disease. Journal of Clinical Immunology, 2014, 34, 12-21.	2.0	135
28	Protective autoantibodies in the rheumatic diseases: lessons for therapy. Nature Reviews Rheumatology, 2013, 9, 291-300.	3.5	39
29	MAPK phosphatase-1 is required for regulatory natural autoantibody-mediated inhibition of TLR responses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19745-19750.	3.3	33
30	In Vivo VL-Targeted Microbial Superantigen Induced Global Shifts in the B Cell Repertoire. Journal of Immunology, 2012, 189, 850-859.	0.4	9
31	Protective Roles of Natural IgM Antibodies. Frontiers in Immunology, 2012, 3, 66.	2.2	271
32	Natural antibody to apoptotic cell membranes inhibits the proinflammatory properties of lupus autoantibody immune complexes. Arthritis and Rheumatism, 2012, 64, 3388-3398.	6.7	50
33	IgM autoantibodies to distinct apoptosis-associated antigens correlate with protection from cardiovascular events and renal disease in patients with SLE. Clinical Immunology, 2012, 142, 390-398.	1.4	173
34	Regulation of Dendritic Cells and Macrophages by an Anti-Apoptotic Cell Natural Antibody that Suppresses TLR Responses and Inhibits Inflammatory Arthritis. Journal of Immunology, 2009, 183, 1346-1359.	0.4	158