
Shuangqiang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6755325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-situ structural evolution analysis of Zr-doped Na3V2(PO4)2F3 coated by N-doped carbon layer as high-performance cathode for sodium-ion batteries. Journal of Energy Chemistry, 2022, 65, 514-523.	12.9	62
2	Atomic layer deposition of alumina onto yolk-shell FeS/MoS2 as universal anodes for Li/Na/K-Ion batteries. Electrochimica Acta, 2022, 402, 139471.	5.2	12
3	MILâ€96â€Al for Li–S Batteries: Shape or Size?. Advanced Materials, 2022, 34, e2107836.	21.0	205
4	Shear-resistant interface of layered oxide cathodes for sodium ion batteries. Energy Storage Materials, 2022, 45, 389-398.	18.0	33
5	Pomegranate-Inspired Nitrogen-Doped Carbon-Coated Bimetallic Sulfides as a High-Performance Anode of Sodium-Ion Batteries and Their Structural Evolution Analysis. ACS Applied Energy Materials, 2022, 5, 3199-3207.	5.1	9
6	Tin-nitrogen coordination boosted lithium-storage sites and electrochemical properties in covalent-organic framework with layer-assembled hollow structure. Journal of Colloid and Interface Science, 2022, 622, 591-601.	9.4	14
7	A kind of Co-based coordination compounds with tunable morphologies and its Li-storage mechanism. Electrochimica Acta, 2022, 422, 140565.	5.2	5
8	Ru―and Cl odoped Li ₃ V ₂ (PO ₄) ₃ with Enhanced Performance for Lithiumâ€Ion Batteries in a Wide Temperature Range. Small, 2022, 18, .	10.0	10
9	Redox-Active Tetramino-Benzoquinone π–Ĩ€ Stacking and H-Bonding onto Multiwalled Carbon Nanotubes toward a High-Performance Asymmetric Supercapacitor. ACS Applied Energy Materials, 2022, 5, 8112-8122.	5.1	7
10	Progress and Perspective of Metal―and Covalentâ€Organic Frameworks and their Derivatives for Lithiumâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 72-97.	4.7	39
11	Higher valency ion substitution causing different fluorite-derived structures in CaZr1-Nd Ti2-Nb O7 (0.05 ≤ ≤) solid solution. Ceramics International, 2021, 47, 2694-2704.	4.8	1
12	N-doped carbon nanofibers encapsulated Cu2-xSe with the improved lithium storage performance and its structural evolution analysis. Electrochimica Acta, 2021, 367, 137449.	5.2	20
13	Ultra-small Fe ₃ O ₄ nanodots encapsulated in layered carbon nanosheets with fast kinetics for lithium/potassium-ion battery anodes. RSC Advances, 2021, 11, 1261-1270.	3.6	16
14	Two-dimensional imine-based covalent–organic-framework derived nitrogen-doped porous carbon nanosheets for high-performance lithium–sulfur batteries. New Journal of Chemistry, 2021, 45, 8683-8692.	2.8	9
15	Fluorine/Nitrogen Co-Doped Porous Carbons Derived from Covalent Triazine Frameworks for High-Performance Supercapacitors. ACS Applied Energy Materials, 2021, 4, 4519-4529.	5.1	21
16	Imineâ€Induced Metalâ€Organic and Covalent Organic Coexisting Framework with Superior Liâ€Storage Properties and Activation Mechanism. ChemSusChem, 2021, 14, 3283-3292.	6.8	12
17	Lithiophilic Vertical Cactusâ€Like Framework Derived from Cu/Znâ€Based Coordination Polymer through In Situ Chemical Etching for Stable Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2008514.	14.9	32
18	The Progress and Prospect of Tunable Organic Molecules for Organic Lithium-Ion Batteries. ACS Nano, 2021, 15, 47-80.	14.6	130

#	Article	IF	CITATIONS
19	Metal–Organic Framework-Derived Nanoconfinements of CoF ₂ and Mixed-Conducting Wiring for High-Performance Metal Fluoride-Lithium Battery. ACS Nano, 2021, 15, 1509-1518.	14.6	69
20	Cobalt Coordinated Cyano Covalent-Organic Framework for High-Performance Potassium-Organic Batteries. ACS Applied Materials & Interfaces, 2021, 13, 48913-48922.	8.0	36
21	Self-assembled 3D Fe2(MoO4)3 microspheres with amorphous shell as anode of lithium-ion batteries with superior electrochemical performance. Chemical Engineering Science, 2020, 217, 115517.	3.8	18
22	Core–Shell Layered Oxide Cathode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 7144-7152.	8.0	47
23	Structure and thermal expansion behavior of Ca ₄ La _{6â^'x} Nd _x (SiO ₄) ₄ (PO ₄) <sub apatite for nuclear waste immobilization. Dalton Transactions, 2020, 49, 2578-2588.</sub 	>2x\$sub>(D∕œub>2
24	3D Honeycomb Architecture Enables a Highâ€Rate and Longâ€Life Iron (III) Fluoride–Lithium Battery. Advanced Materials, 2019, 31, e1905146.	21.0	84
25	Natural Vermiculite Enables Highâ€Performance in Lithium–Sulfur Batteries via Electrical Double Layer Effects. Advanced Functional Materials, 2019, 29, 1902820.	14.9	50
26	A Sulfur–Limoneneâ€Based Electrode for Lithium–Sulfur Batteries: Highâ€Performance by Selfâ€Protection. Advanced Materials, 2018, 30, e1706643.	21.0	114
27	Multi-electron reaction materials for sodium-based batteries. Materials Today, 2018, 21, 960-973.	14.2	103
28	Top-down synthesis of interconnected two-dimensional carbon/antimony hybrids as advanced anodes for sodium storage. Energy Storage Materials, 2018, 10, 122-129.	18.0	50
29	Ultrathin Ti ₂ Nb ₂ O ₉ Nanosheets with Pseudocapacitive Properties as Superior Anode for Sodiumâ€ion Batteries. Advanced Materials, 2018, 30, e1804378.	21.0	117
30	Preparation and characterization of novel nonstoichiometric magnesium aluminate spinels. Ceramics International, 2018, 44, 15104-15109.	4.8	14
31	Cross-Linking Hollow Carbon Sheet Encapsulated CuP ₂ Nanocomposites for High Energy Density Sodium-Ion Batteries. ACS Nano, 2018, 12, 7018-7027.	14.6	99
32	Peapodâ€like Li ₃ VO ₄ /Nâ€Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for Highâ€Energy Lithiumâ€lon Capacitors. Advanced Materials, 2017, 29, 1700142.	21.0	298
33	Challenges and Perspectives for NASICONâ€īype Electrode Materials for Advanced Sodiumâ€ion Batteries. Advanced Materials, 2017, 29, 1700431.	21.0	499
34	Carbon oated Li ₃ VO ₄ Spheres as Constituents of an Advanced Anode Material for Highâ€Rate Longâ€Life Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1701571.	21.0	119
35	Activated graphene with tailored pore structure parameters for long cycle-life lithium–sulfur batteries. Nano Research, 2017, 10, 4305-4317.	10.4	52
36	Dualâ€Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithiumâ€ l on Batteries. Advanced Materials, 2017, 29, 1605650.	21.0	325

SHUANGQIANG CHEN

#	Article	IF	CITATIONS
37	MoS ₂ â€Based Nanocomposites for Electrochemical Energy Storage. Advanced Science, 2017, 4, 1600289.	11.2	374
38	Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries. Energy Storage Materials, 2016, 5, 180-190.	18.0	61
39	A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors. Scientific Reports, 2016, 6, 37752.	3.3	58
40	A free-standing LiFePO ₄ –carbon paper hybrid cathode for flexible lithium-ion batteries. Green Chemistry, 2016, 18, 2691-2698.	9.0	53
41	Mesoporous Carbon Nanocube Architecture for Highâ€Performance Lithium–Oxygen Batteries. Advanced Functional Materials, 2015, 25, 4436-4444.	14.9	155
42	3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for Highâ€Rate Performance Sodiumâ€Ion Batteries. ChemSusChem, 2015, 8, 2948-2955.	6.8	70
43	Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction. Scientific Reports, 2015, 5, 7629.	3.3	234
44	Microwave-assisted Synthesis of Mesoporous Co ₃ O ₄ Nanoflakes for Applications in Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2015, 7, 3306-3313.	8.0	169
45	A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO ₂ /graphene for sodium-ion batteries. Nanoscale, 2015, 7, 3164-3172.	5.6	130
46	Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy, 2015, 16, 268-280.	16.0	132
47	Microwave synthesis of α-Fe2O3 nanoparticles and their lithium storage properties: A comparative study. Journal of Alloys and Compounds, 2015, 648, 732-739.	5.5	38
48	Mesoporous MnCo ₂ O ₄ with a Flakeâ€Like Structure as Advanced Electrode Materials for Lithiumâ€Ion Batteries and Supercapacitors. Chemistry - A European Journal, 2015, 21, 1526-1532.	3.3	183
49	A Microwave Synthesis of Mesoporous NiCo ₂ O ₄ Nanosheets as Electrode Materials for Lithiumâ€lon Batteries and Supercapacitors. ChemPhysChem, 2015, 16, 169-175.	2.1	122
50	SnS ₂ Nanoplatelet@Graphene Nanocomposites as Highâ€Capacity Anode Materials for Sodiumâ€ion Batteries. Chemistry - an Asian Journal, 2014, 9, 1611-1617.	3.3	166
51	Batteries: 3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries (Adv. Energy Mater. 8/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	19.5	2
52	Graphene/MnO2 hybrid nanosheets as high performance electrode materials for supercapacitors. Materials Chemistry and Physics, 2014, 143, 740-746.	4.0	34
53	Selfâ€Assembling Synthesis of Freeâ€standing Nanoporous Graphene–Transitionâ€Metal Oxide Flexible Electrodes for Highâ€Performance Lithiumâ€ion Batteries and Supercapacitors. Chemistry - an Asian Journal, 2014, 9, 206-211.	3.3	62
54	Microwave hydrothermal synthesis of urchin-like NiO nanospheres as electrode materials for lithium-ion batteries and supercapacitors with enhanced electrochemical performances. Journal of Alloys and Compounds, 2014, 582, 522-527.	5.5	48

#	Article	IF	CITATIONS
55	3D mesoporous hybrid NiCo ₂ O ₄ @graphene nanoarchitectures as electrode materials for supercapacitors with enhanced performances. Journal of Materials Chemistry A, 2014, 2, 8103-8109.	10.3	94
56	3D Hyperbranched Hollow Carbon Nanorod Architectures for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2014, 4, 1301761.	19.5	154
57	Porous Graphene Nanoarchitectures: An Efficient Catalyst for Low Charge-Overpotential, Long Life, and High Capacity Lithium–Oxygen Batteries. Nano Letters, 2014, 14, 3145-3152.	9.1	329
58	Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Research, 2014, 7, 85-94.	10.4	163
59	Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances. Journal of Materials Chemistry A, 2014, 2, 16199-16207.	10.3	116
60	An optimized LiNO3/DMSO electrolyte for high-performance rechargeable Li–O2 batteries. RSC Advances, 2014, 4, 11115.	3.6	60
61	Microwave-assisted synthesis of spherical β-Ni(OH) 2 superstructures for electrochemical capacitors with excellent cycling stability. Chemical Physics Letters, 2014, 610-611, 115-120.	2.6	25
62	A simple approach to prepare nickel hydroxide nanosheets for enhanced pseudocapacitive performance. RSC Advances, 2014, 4, 19476-19481.	3.6	28
63	Porous carbon particles derived from natural peanut shells as lithium ion battery anode and its electrochemical properties. Electronic Materials Letters, 2014, 10, 819-826.	2.2	18
64	Highly Porous NiCo ₂ O ₄ Nanoflakes and Nanobelts as Anode Materials for Lithium-Ion Batteries with Excellent Rate Capability. ACS Applied Materials & Interfaces, 2014, 6, 14827-14835.	8.0	187
65	Hierarchical macroporous/mesoporous NiCo ₂ O ₄ nanosheets as cathode catalysts for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2014, 2, 12053.	10.3	82
66	Porous poly(vinylidene fluoride-co-hexafluoropropylene) polymer membrane with sandwich-like architecture for highly safe lithium ion batteries. Journal of Membrane Science, 2014, 472, 133-140.	8.2	75
67	Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Scientific Reports, 2014, 4, 6007.	3.3	165
68	Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 13484.	10.3	103
69	Large-scale and low cost synthesis of graphene as high capacity anode materials for lithium-ion batteries. Carbon, 2013, 64, 158-169.	10.3	40
70	Synthesis of Fe2O3–CNT–graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage. Nano Energy, 2013, 2, 425-434.	16.0	120
71	Hydrothermal Synthesis of Nickel Oxide Nanosheets for Lithiumâ€ion Batteries and Supercapacitors with Excellent Performance. Chemistry - an Asian Journal, 2013, 8, 2828-2832.	3.3	33
72	Microwave hydrothermal synthesis of high performance tin–graphene nanocomposites for lithium ion batteries. Journal of Power Sources, 2012, 216, 22-27.	7.8	92

SHUANGQIANG CHEN

#	Article	IF	CITATIONS
73	Nanocomposites of hematite (α-Fe2O3) nanospindles with crumpled reduced graphene oxide nanosheets as high-performance anode material for lithium-ion batteries. RSC Advances, 2012, 2, 10977.	3.6	75
74	Chemical-free synthesis of graphene–carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries. Carbon, 2012, 50, 4557-4565.	10.3	106
75	Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Nanoscale, 2011, 3, 4323.	5.6	119
76	Graphene supported Sn–Sb@carbon core-shell particles as a superior anode for lithium ion batteries. Electrochemistry Communications, 2010, 12, 1302-1306.	4.7	132
77	Microwave-assisted synthesis of a Co3O4–graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. Journal of Materials Chemistry, 2010, 20, 9735.	6.7	261
78	2.5 V high performance aqueous and semiâ€solidâ€state symmetric supercapacitors enabled by 3 m sulfolaneâ€saturated aqueous electrolytes. Energy Technology, 0, , .	3.8	2