Shuangqiang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6755325/publications.pdf

Version: 2024-02-01

78 papers 7,406 citations

44069 48 h-index 77 g-index

78 all docs 78 docs citations

78 times ranked 9676 citing authors

#	Article	IF	CITATIONS
1	Challenges and Perspectives for NASICONâ€Type Electrode Materials for Advanced Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1700431.	21.0	499
2	MoS ₂ â€Based Nanocomposites for Electrochemical Energy Storage. Advanced Science, 2017, 4, 1600289.	11.2	374
3	Porous Graphene Nanoarchitectures: An Efficient Catalyst for Low Charge-Overpotential, Long Life, and High Capacity Lithium–Oxygen Batteries. Nano Letters, 2014, 14, 3145-3152.	9.1	329
4	Dualâ€Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithiumâ€ion Batteries. Advanced Materials, 2017, 29, 1605650.	21.0	325
5	Peapodâ€like Li ₃ VO ₄ /Nâ€Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for Highâ€Energy Lithiumâ€lon Capacitors. Advanced Materials, 2017, 29, 1700142.	21.0	298
6	Microwave-assisted synthesis of a Co3O4–graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. Journal of Materials Chemistry, 2010, 20, 9735.	6.7	261
7	Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction. Scientific Reports, 2015, 5, 7629.	3.3	234
8	MILâ€96â€Al for Li–S Batteries: Shape or Size?. Advanced Materials, 2022, 34, e2107836.	21.0	205
9	Highly Porous NiCo ₂ O ₄ Nanoflakes and Nanobelts as Anode Materials for Lithium-Ion Batteries with Excellent Rate Capability. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14827-14835.	8.0	187
10	Mesoporous MnCo ₂ O ₄ with a Flakeâ€Like Structure as Advanced Electrode Materials for Lithiumâ€Ion Batteries and Supercapacitors. Chemistry - A European Journal, 2015, 21, 1526-1532.	3.3	183
11	Microwave-assisted Synthesis of Mesoporous Co ₃ O ₄ Nanoflakes for Applications in Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries &	8.0	169
12	SnS ₂ Nanoplatelet@Graphene Nanocomposites as Highâ€Capacity Anode Materials for Sodiumâ€Ion Batteries. Chemistry - an Asian Journal, 2014, 9, 1611-1617.	3.3	166
13	Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Scientific Reports, 2014, 4, 6007.	3.3	165
14	Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Research, 2014, 7, 85-94.	10.4	163
15	Mesoporous Carbon Nanocube Architecture for Highâ€Performance Lithium–Oxygen Batteries. Advanced Functional Materials, 2015, 25, 4436-4444.	14.9	155
16	3D Hyperbranched Hollow Carbon Nanorod Architectures for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2014, 4, 1301761.	19.5	154
17	Graphene supported Sn–Sb@carbon core-shell particles as a superior anode for lithium ion batteries. Electrochemistry Communications, 2010, 12, 1302-1306.	4.7	132
18	Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium–sulfur batteries with long cycle life. Nano Energy, 2015, 16, 268-280.	16.0	132

#	Article	IF	CITATIONS
19	A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO ₂ /graphene for sodium-ion batteries. Nanoscale, 2015, 7, 3164-3172.	5 . 6	130
20	The Progress and Prospect of Tunable Organic Molecules for Organic Lithium-Ion Batteries. ACS Nano, 2021, 15, 47-80.	14.6	130
21	A Microwave Synthesis of Mesoporous NiCo ₂ O ₄ Nanosheets as Electrode Materials for Lithiumâ€lon Batteries and Supercapacitors. ChemPhysChem, 2015, 16, 169-175.	2.1	122
22	Synthesis of Fe2O3–CNT–graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage. Nano Energy, 2013, 2, 425-434.	16.0	120
23	Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Nanoscale, 2011, 3, 4323.	5. 6	119
24	Carbonâ€Coated Li ₃ VO ₄ Spheres as Constituents of an Advanced Anode Material for Highâ€Rate Longâ€Life Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1701571.	21.0	119
25	Ultrathin Ti ₂ Nb ₂ O ₉ Nanosheets with Pseudocapacitive Properties as Superior Anode for Sodiumâ€lon Batteries. Advanced Materials, 2018, 30, e1804378.	21.0	117
26	Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances. Journal of Materials Chemistry A, 2014, 2, 16199-16207.	10.3	116
27	A Sulfur–Limoneneâ€Based Electrode for Lithium–Sulfur Batteries: Highâ€Performance by Selfâ€Protection. Advanced Materials, 2018, 30, e1706643.	21.0	114
28	Chemical-free synthesis of graphene–carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries. Carbon, 2012, 50, 4557-4565.	10.3	106
29	Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 13484.	10.3	103
30	Multi-electron reaction materials for sodium-based batteries. Materials Today, 2018, 21, 960-973.	14.2	103
31	Cross-Linking Hollow Carbon Sheet Encapsulated CuP ₂ Nanocomposites for High Energy Density Sodium-Ion Batteries. ACS Nano, 2018, 12, 7018-7027.	14.6	99
32	3D mesoporous hybrid NiCo ₂ O ₄ @graphene nanoarchitectures as electrode materials for supercapacitors with enhanced performances. Journal of Materials Chemistry A, 2014, 2, 8103-8109.	10.3	94
33	Microwave hydrothermal synthesis of high performance tin–graphene nanocomposites for lithium ion batteries. Journal of Power Sources, 2012, 216, 22-27.	7.8	92
34	3D Honeycomb Architecture Enables a Highâ∈Rate and Longâ∈Life Iron (III) Fluorideâ∈"Lithium Battery. Advanced Materials, 2019, 31, e1905146.	21.0	84
35	Hierarchical macroporous/mesoporous NiCo ₂ O ₄ nanosheets as cathode catalysts for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2014, 2, 12053.	10.3	82
36	Nanocomposites of hematite (α-Fe2O3) nanospindles with crumpled reduced graphene oxide nanosheets as high-performance anode material for lithium-ion batteries. RSC Advances, 2012, 2, 10977.	3.6	75

#	Article	lF	Citations
37	Porous poly(vinylidene fluoride-co-hexafluoropropylene) polymer membrane with sandwich-like architecture for highly safe lithium ion batteries. Journal of Membrane Science, 2014, 472, 133-140.	8.2	7 5
38	3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for Highâ€Rate Performance Sodiumâ€ion Batteries. ChemSusChem, 2015, 8, 2948-2955.	6.8	70
39	Metal–Organic Framework-Derived Nanoconfinements of CoF ₂ and Mixed-Conducting Wiring for High-Performance Metal Fluoride-Lithium Battery. ACS Nano, 2021, 15, 1509-1518.	14.6	69
40	Selfâ€Assembling Synthesis of Freeâ€standing Nanoporous Graphene–Transitionâ€Metal Oxide Flexible Electrodes for Highâ€Performance Lithiumâ€lon Batteries and Supercapacitors. Chemistry - an Asian Journal, 2014, 9, 206-211.	3.3	62
41	In-situ structural evolution analysis of Zr-doped Na3V2(PO4)2F3 coated by N-doped carbon layer as high-performance cathode for sodium-ion batteries. Journal of Energy Chemistry, 2022, 65, 514-523.	12.9	62
42	Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries. Energy Storage Materials, 2016, 5, 180-190.	18.0	61
43	An optimized LiNO3/DMSO electrolyte for high-performance rechargeable Li–O2 batteries. RSC Advances, 2014, 4, 11115.	3.6	60
44	A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors. Scientific Reports, 2016, 6, 37752.	3.3	58
45	A free-standing LiFePO ₄ –carbon paper hybrid cathode for flexible lithium-ion batteries. Green Chemistry, 2016, 18, 2691-2698.	9.0	53
46	Activated graphene with tailored pore structure parameters for long cycle-life lithium–sulfur batteries. Nano Research, 2017, 10, 4305-4317.	10.4	52
47	Top-down synthesis of interconnected two-dimensional carbon/antimony hybrids as advanced anodes for sodium storage. Energy Storage Materials, 2018, 10, 122-129.	18.0	50
48	Natural Vermiculite Enables Highâ€Performance in Lithium–Sulfur Batteries via Electrical Double Layer Effects. Advanced Functional Materials, 2019, 29, 1902820.	14.9	50
49	Microwave hydrothermal synthesis of urchin-like NiO nanospheres as electrode materials for lithium-ion batteries and supercapacitors with enhanced electrochemical performances. Journal of Alloys and Compounds, 2014, 582, 522-527.	5 . 5	48
50	Core–Shell Layered Oxide Cathode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 7144-7152.	8.0	47
51	Large-scale and low cost synthesis of graphene as high capacity anode materials for lithium-ion batteries. Carbon, 2013, 64, 158-169.	10.3	40
52	Progress and Perspective of Metal―and Covalentâ€Organic Frameworks and their Derivatives for Lithiumâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 72-97.	4.7	39
53	Microwave synthesis of α-Fe2O3 nanoparticles and their lithium storage properties: A comparative study. Journal of Alloys and Compounds, 2015, 648, 732-739.	5.5	38
54	Cobalt Coordinated Cyano Covalent-Organic Framework for High-Performance Potassium-Organic Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 48913-48922.	8.0	36

#	Article	IF	CITATIONS
55	Graphene/MnO2 hybrid nanosheets as high performance electrode materials for supercapacitors. Materials Chemistry and Physics, 2014, 143, 740-746.	4.0	34
56	Hydrothermal Synthesis of Nickel Oxide Nanosheets for Lithiumâ€lon Batteries and Supercapacitors with Excellent Performance. Chemistry - an Asian Journal, 2013, 8, 2828-2832.	3.3	33
57	Shear-resistant interface of layered oxide cathodes for sodium ion batteries. Energy Storage Materials, 2022, 45, 389-398.	18.0	33
58	Lithiophilic Vertical Cactusâ€Like Framework Derived from Cu/Znâ€Based Coordination Polymer through In Situ Chemical Etching for Stable Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2008514.	14.9	32
59	A simple approach to prepare nickel hydroxide nanosheets for enhanced pseudocapacitive performance. RSC Advances, 2014, 4, 19476-19481.	3.6	28
60	Microwave-assisted synthesis of spherical \hat{l}^2 -Ni(OH) 2 superstructures for electrochemical capacitors with excellent cycling stability. Chemical Physics Letters, 2014, 610-611, 115-120.	2.6	25
61	Fluorine/Nitrogen Co-Doped Porous Carbons Derived from Covalent Triazine Frameworks for High-Performance Supercapacitors. ACS Applied Energy Materials, 2021, 4, 4519-4529.	5.1	21
62	N-doped carbon nanofibers encapsulated Cu2-xSe with the improved lithium storage performance and its structural evolution analysis. Electrochimica Acta, 2021, 367, 137449.	5.2	20
63	Porous carbon particles derived from natural peanut shells as lithium ion battery anode and its electrochemical properties. Electronic Materials Letters, 2014, 10, 819-826.	2.2	18
64	Self-assembled 3D Fe2(MoO4)3 microspheres with amorphous shell as anode of lithium-ion batteries with superior electrochemical performance. Chemical Engineering Science, 2020, 217, 115517.	3.8	18
65	Ultra-small Fe ₃ O ₄ nanodots encapsulated in layered carbon nanosheets with fast kinetics for lithium/potassium-ion battery anodes. RSC Advances, 2021, 11, 1261-1270.	3.6	16
66	Preparation and characterization of novel nonstoichiometric magnesium aluminate spinels. Ceramics International, 2018, 44, 15104-15109.	4.8	14
67	Tin-nitrogen coordination boosted lithium-storage sites and electrochemical properties in covalent-organic framework with layer-assembled hollow structure. Journal of Colloid and Interface Science, 2022, 622, 591-601.	9.4	14
68	Imineâ€Induced Metalâ€Organic and Covalent Organic Coexisting Framework with Superior Liâ€Storage Properties and Activation Mechanism. ChemSusChem, 2021, 14, 3283-3292.	6.8	12
69	Atomic layer deposition of alumina onto yolk-shell FeS/MoS2 as universal anodes for Li/Na/K-lon batteries. Electrochimica Acta, 2022, 402, 139471.	5.2	12
70	Ru―and Clâ€Codoped Li ₃ V ₂ (PO ₄) ₃ with Enhanced Performance for Lithiumâ€Ion Batteries in a Wide Temperature Range. Small, 2022, 18, .	10.0	10
71	Two-dimensional imine-based covalent–organic-framework derived nitrogen-doped porous carbon nanosheets for high-performance lithium–sulfur batteries. New Journal of Chemistry, 2021, 45, 8683-8692.	2.8	9
72	Pomegranate-Inspired Nitrogen-Doped Carbon-Coated Bimetallic Sulfides as a High-Performance Anode of Sodium-Ion Batteries and Their Structural Evolution Analysis. ACS Applied Energy Materials, 2022, 5, 3199-3207.	5.1	9

#	Article	IF	CITATIONS
73	Redox-Active Tetramino-Benzoquinone π–π Stacking and H-Bonding onto Multiwalled Carbon Nanotubes toward a High-Performance Asymmetric Supercapacitor. ACS Applied Energy Materials, 2022, 5, 8112-8122.	5.1	7
74	Structure and thermal expansion behavior of Ca ₄ La _{6â^'x} Nd _x (SiO ₄) ₄ (PO ₄) <sub 2020,="" 2578-2588.<="" 49,="" apatite="" dalton="" for="" immobilization.="" nuclear="" td="" transactions,="" waste=""><td>>2x≴sub></td><td>O∕ssub>2</td></sub>	>2x≴sub>	O∕ssub>2
75	A kind of Co-based coordination compounds with tunable morphologies and its Li-storage mechanism. Electrochimica Acta, 2022, 422, 140565.	5.2	5
76	Batteries: 3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries (Adv. Energy Mater. 8/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	19.5	2
77	2.5 V high performance aqueous and semiâ€solidâ€state symmetric supercapacitors enabled by 3 m sulfolaneâ€saturated aqueous electrolytes. Energy Technology, 0, , .	3.8	2
78	Higher valency ion substitution causing different fluorite-derived structures in CaZr1-Nd Ti2-Nb O7 (0.05 ≤ ≤) solid solution. Ceramics International, 2021, 47, 2694-2704.	4.8	1