Alexis J Combes

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6755080/alexis-j-combes-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23	1,016	12	31
papers	citations	h-index	g-index
32	1,717	21 avg, IF	3.8
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
23	Holistic Characterization of Tumor Monocyte-to-Macrophage Differentiation Integrates Distinct Immune Phenotypes in Kidney Cancer <i>Cancer Immunology Research</i> , 2022 , 10, 403-419	12.5	O
22	Tumor-associated macrophage heterogeneity is driven by tissue territories in breast cancer. <i>Cell Reports</i> , 2022 , 39, 110865	10.6	О
21	Discovering dominant tumor immune archetypes in a pan-cancer census Cell, 2021,	56.2	10
20	Archetypes of checkpoint-responsive immunity. <i>Trends in Immunology</i> , 2021 , 42, 960-974	14.4	0
19	The intersection of COVID-19 and autoimmunity. Journal of Clinical Investigation, 2021,	15.9	22
18	A tumor-specific mechanism of T enrichment mediated by the integrin $\[mathbb{MB}$. Science Immunology, 2021 , 6,	28	2
17	Transcriptomic analysis of immune cells in a multi-ethnic cohort of systemic lupus erythematosus patients identifies ethnicity- and disease-specific expression signatures. <i>Communications Biology</i> , 2021 , 4, 488	6.7	3
16	DNGR-1 limits Flt3L-mediated antitumor immunity by restraining tumor-infiltrating type I conventional dendritic cells 2021 , 9,		5
15	Global absence and targeting of protective immune states in severe COVID-19. <i>Nature</i> , 2021 , 591, 124	-1 3 6.4	100
14	Longitudinal single-cell epitope and RNA-sequencing reveals the immunological impact of type 1 interferon autoantibodies in critical COVID-19 2021 ,		9
13	Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. <i>Science Translational Medicine</i> , 2021 , 13, eabh2624	17.5	34
12	Active surveillance characterizes human intratumoral T cell exhaustion. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	5
11	SCENITH: A Flow Cytometry-Based Method to Functionally Profile Energy Metabolism with Single-Cell Resolution. <i>Cell Metabolism</i> , 2020 , 32, 1063-1075.e7	24.6	43
10	Lessons of COVID-19: A roadmap for post-pandemic science. <i>Journal of Experimental Medicine</i> , 2020 , 217,	16.6	4
9	Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4 T Cell Immunity. <i>Cell</i> , 2019 , 177, 556-571.e16	56.2	195
8	Guanabenz inhibits TLR9 signaling through a pathway that is independent of eIF2 dephosphorylation by the GADD34/PP1c complex. <i>Science Signaling</i> , 2018 , 11,	8.8	13
7	A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. <i>Nature Medicine</i> , 2018 , 24, 1178-1191	50.5	404

LIST OF PUBLICATIONS

6	Protein synthesis inhibition and GADD34 control IFN-Iheterogeneous expression in response toldsRNA. <i>EMBO Journal</i> , 2017 , 36, 761-782	13	40
5	MARCH9-mediated ubiquitination regulates MHC I export from the TGN. <i>Immunology and Cell Biology</i> , 2017 , 95, 753-764	5	18
4	BAD-LAMP controls TLR9 trafficking and signalling in human plasmacytoid dendritic cells. <i>Nature Communications</i> , 2017 , 8, 913	17.4	34
3	LAMP5 Fine-Tunes GABAergic Synaptic Transmission in Defined Circuits of the Mouse Brain. <i>PLoS ONE</i> , 2016 , 11, e0157052	3.7	23
2	RUN and FYVE domain-containing protein 4 enhances autophagy and lysosome tethering in response to Interleukin-4. <i>Journal of Cell Biology</i> , 2015 , 210, 1133-52	7.3	39
1	A Pan-Cancer Census of Dominant Tumor Immune Archetypes		3