
Chris D Geddes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6755073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial carbon nanodots: photodynamic inactivation and dark antimicrobial effects on bacteria by brominated carbon nanodots. Nanoscale, 2021, 13, 85-99.	2.8	31
2	Plasmonic enhancement of nitric oxide generation. Nanoscale, 2021, 13, 12288-12297.	2.8	2
3	Development of a Microplate Platform for High-Throughput Sample Preparation Based on Microwave Metasurfaces. IEEE Access, 2021, 9, 37823-37833.	2.6	1
4	Metal-Enhanced Photosensitization of Singlet Oxygen (ME1O2) from Brominated Carbon Nanodots on Silver Nanoparticle Substrates. Plasmonics, 2021, 16, 1765-1772.	1.8	3
5	Sample Preparation and Diagnostic Methods for a Variety of Settings: A Comprehensive Review. Molecules, 2021, 26, 5666.	1.7	10
6	Low-concentration trypsin detection from a metal-enhanced fluorescence (MEF) platform: Towards the development of ultra-sensitive and rapid detection of proteolytic enzymes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117739.	2.0	14
7	Opinions in Fluorescence Spectroscopy. Journal of Fluorescence, 2020, 30, 1-1.	1.3	6
8	The Inverse Relationship between Metal-Enhanced Fluorescence and Fluorophore-Induced Plasmonic Current. Journal of Physical Chemistry Letters, 2020, 11, 8145-8151.	2.1	4
9	Carbon Nanodots in Photodynamic Antimicrobial Therapy: A Review. Materials, 2020, 13, 4004.	1.3	59
10	Spectral distortions in zinc-based metal-enhanced fluorescence underpinned by fast and slow electronic transitions. Chemical Physics Letters, 2020, 744, 137212.	1.2	2
11	Spectral Distortions in Metal-Enhanced Fluorescence: Experimental Evidence for Ultra-Fast and Slow Transitions. Journal of Physical Chemistry C, 2020, 124, 4723-4737.	1.5	12
12	Plasmonic Electricity II: The Effect of Particle Size, Solvent Permittivity, Applied Voltage, and Temperature on Fluorophore-Induced Plasmonic Current. Journal of Physical Chemistry C, 2020, 124, 5780-5788.	1.5	6
13	Opinions in Plasmonics. Plasmonics, 2020, 15, 1-1.	1.8	11
14	Fluorophore-Induced Plasmonic Current: Generation-Based Detection of Singlet Oxygen. ACS Sensors, 2020, 5, 1223-1229.	4.0	13
15	A comparison of Lyse-It to other cellular sample preparation, bacterial lysing, and DNA fragmentation technologies. PLoS ONE, 2019, 14, e0220102.	1.1	3
16	Plasmonic Electricity: Fluorophore-Induced Plasmonic Current. Journal of Physical Chemistry C, 2019, 123, 27770-27777.	1.5	6
17	Plasmonics—One of the Most Prominent Journals in the Plasmonics Field in the World Today. Plasmonics, 2019, 14, 1039-1040.	1.8	0
18	Effects of Lyse-It on endonuclease fragmentation, function and activity. PLoS ONE, 2019, 14, e0223008.	1.1	5

#	Article	IF	CITATIONS
19	Heavy carbon nanodots 2: plasmon amplification in Quanta Plateâ,,¢ wells and the correlation with the synchronous scattering spectrum. Physical Chemistry Chemical Physics, 2019, 21, 1254-1259.	1.3	10
20	Alpha-fluorescence (αS1) from thermally stable carbon nanodots. Chemical Physics Letters, 2019, 721, 123-128.	1.2	2
21	Silvered conical-bottom 96-well plates: enhanced low volume detection and the metal-enhanced fluorescence volume/ratio effect. Nanoscale, 2019, 11, 4337-4344.	2.8	15
22	Elucidation of a non-thermal mechanism for DNA/RNA fragmentation and protein degradation when using Lyse-It. PLoS ONE, 2019, 14, e0225475.	1.1	3
23	Review of Advances in Metal-Enhanced Fluorescence. International Journal of Behavioral and Consultation Therapy, 2019, , 253-283.	0.4	7
24	Viable Pathogenic Organism Transportation and Recovery from a Low-Cost Support. Biophysical Journal, 2018, 114, 663a.	0.2	0
25	Heavy carbon nanodots: a new phosphorescent carbon nanostructure. Physical Chemistry Chemical Physics, 2018, 20, 15518-15527.	1.3	29
26	Rapid sample preparation with Lyse-It® for Listeria monocytogenes and Vibrio cholerae. PLoS ONE, 2018, 13, e0201070.	1.1	8
27	Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF): A Rapid, < 10 Copy Number Detection Platform. Reviews in Fluorescence, 2018, , 1-20.	0.5	1
28	Plasmonic Electricity: A Digital Form of Metal-Enhanced Fluorescence. Biophysical Journal, 2017, 112, 586a-587a.	0.2	0
29	In Situ Enzymatic Conversion of Nannochloropsis oceanica IMET1 Biomass into Fatty Acid Methyl Esters. Bioenergy Research, 2017, 10, 438-448.	2.2	10
30	Lyse-itâ,"¢: a Single Step, Single Platform, Transformational Lysing Technology. Journal of Fluorescence, 2017, 27, 417-417.	1.3	0
31	Lyse-Itâ"¢: A Rapid Platform for Cellular Lysing and Tunable DNA/Protein Fragmentation. , 2017, , 275-296.		3
32	Identification of a Fluorescent Protein from <i>Rhacostoma Atlantica</i> . Photochemistry and Photobiology, 2016, 92, 667-677.	1.3	0
33	Microwave-accelerated method for ultra-rapid extraction of Neisseria gonorrhoeae DNA for downstream detection. Analytical Biochemistry, 2016, 510, 33-40.	1.1	13
34	25 Years of the Journal of Fluorescence. Journal of Fluorescence, 2016, 26, 377-378.	1.3	0
35	10 Years of the Plasmonics Journal. Plasmonics, 2016, 11, 351-352.	1.8	0
36	Fluorescence, Phosphorescence, and Chemiluminescence. Analytical Chemistry, 2016, 88, 170-202.	3.2	95

#	Article	IF	CITATIONS
37	Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4381-4386.	3.3	127
38	Plasmonic enhancement of intrinsic carbon nanodot emission. Chemical Physics Letters, 2015, 622, 124-127.	1.2	11
39	Nanoparticle Sizing and Potential Quality Control of Sols Using a Unique Fluorescence Anisotropy Probe and 3D Contour Anisotropy Mapping. Journal of Physical Chemistry Letters, 2015, 6, 918-922.	2.1	4
40	Spectral Distortions in Metal-Enhanced Fluorescence. Biophysical Journal, 2015, 108, 623a-624a.	0.2	0
41	Metal-enhanced fluorescence from zinc substrates can lead to spectral distortion and a wavelength dependence. Applied Physics Letters, 2015, 106, .	1.5	13
42	Silica nanoparticle metrology using Ursa Blueâ,,¢ and colloidal Ludox solutions. Dyes and Pigments, 2015, 112, 50-53.	2.0	2
43	Extraction and Sensitive Detection of Toxins A and B from the Human Pathogen Clostridium difficile in 40 Seconds Using Microwave-Accelerated Metal-Enhanced Fluorescence. PLoS ONE, 2014, 9, e104334.	1.1	17
44	Spectral shifts in metal-enhanced fluorescence. Applied Physics Letters, 2014, 105, 063102.	1.5	14
45	Metal-Enhanced S ₁ and Alpha- S ₁ Fluorescence: Effects of Far-Field Excitation Irradiance on Enhanced Fluorescence. Journal of Physical Chemistry C, 2014, 118, 28791-28796.	1.5	10
46	5-Color Multiplexed Microwave-Accelerated Metal-Enhanced Fluorescence: Detection and Analysis of Multiple DNA Sequences from within one Sample Well within a Few Seconds. Journal of Fluorescence, 2014, 24, 1715-1722.	1.3	6
47	Rapid Catch and Signal (RCS) Technology Platform: Multiplexed Three-Color, 30Âs Microwave-Accelerated Metal-Enhanced Fluorescence DNA Assays. Plasmonics, 2014, 9, 1501-1510.	1.8	2
48	30ÂYears of Surface Plasmon Resonance (SPR) for Biosensing. Plasmonics, 2014, 9, 727-727.	1.8	4
49	Fluorescence-based Broad Dynamic Range Viscosity Probes. Journal of Fluorescence, 2014, 24, 397-402.	1.3	19
50	Fluorescence Correlation Spectroscopy of Methane-Burn Carbon Nanodots. Biophysical Journal, 2014, 106, 620a.	0.2	0
51	Dr Vladislav Papper Joins the Editorial Board of the Journal of Fluorescence. Journal of Fluorescence, 2013, 23, 611-611.	1.3	0
52	Metal-enhanced fluorescence based excitation volumetric effect of plasmon-enhanced singlet oxygen and super oxide generation. Physical Chemistry Chemical Physics, 2013, 15, 15740.	1.3	21
53	Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system. Physical Chemistry Chemical Physics, 2013, 15, 19538.	1.3	77
54	Photophysical Characterization and α-Type Delayed Luminescence of Rapidly Prepared Au Clusters. Journal of Physical Chemistry C, 2013, 117, 16650-16657.	1.5	11

#	Article	IF	CITATIONS
55	Highly Sensitive Quantitation of Human Serum Albumin in Clinical Samples for Hypoproteinemia using Metal-Enhanced Fluorescence. Journal of Fluorescence, 2013, 23, 187-192.	1.3	10
56	Enhanced Photostability of Fluorophores in the Presence of Antioxidants and Plasmon Supporting Nanoparticles. Biophysical Journal, 2013, 104, 349a.	0.2	0
57	Wavelength-dependent metal-enhanced fluorescence using synchronous spectral analysis. Chemical Physics Letters, 2013, 556, 168-172.	1.2	30
58	Metal-enhanced fluorescence. Physical Chemistry Chemical Physics, 2013, 15, 19537.	1.3	100
59	Blind Evaluation of the Microwave-Accelerated Metal-Enhanced Fluorescence Ultrarapid and Sensitive Chlamydia trachomatis Test by Use of Clinical Samples. Journal of Clinical Microbiology, 2013, 51, 2913-2920.	1.8	66
60	Sialyl Residues Modulate LPS-Mediated Signaling through the Toll-Like Receptor 4 Complex. PLoS ONE, 2012, 7, e32359.	1.1	49
61	Distance Dependence of Metal-Enhanced Fluorescence. Plasmonics, 2012, 7, 739-744.	1.8	78
62	Metal-enhanced fluorescence: The role of quantum yield, Q, in enhanced fluorescence. Applied Physics Letters, 2012, 100, .	1.5	58
63	Reduced Lifetimes are Directly Correlated with Excitation Irradiance in Metal-Enhanced Fluorescence (MEF). Journal of Fluorescence, 2012, 22, 1659-1662.	1.3	23
64	SYBR Green I: Fluorescence Properties and Interaction with DNA. Journal of Fluorescence, 2012, 22, 1189-1199.	1.3	223
65	Ultra-fast pg/ml anthrax toxin (protective antigen) detection assay based on microwave-accelerated metal-enhanced fluorescence. Analytical Biochemistry, 2012, 425, 54-61.	1.1	38
66	Metal-enhanced fluorescence exciplex emission. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 85, 134-138.	2.0	12
67	Mixed-metal substrates for applications in metal-enhanced fluorescence. Journal of Materials Chemistry, 2011, 21, 6179.	6.7	10
68	Development of a Microwave—Accelerated Metal-Enhanced Fluorescence 40 Second, <100 cfu/mL Point of Care Assay for the Detection of Chlamydia Trachomatis. IEEE Transactions on Biomedical Engineering, 2011, 58, 781-784.	2.5	32
69	UV to NIR Surface Plasmon Coupled and Metal-Enhanced Fluorescence Using Indium Thin Films: Application to Intrinsic (Label-less) Protein Fluorescence Detection. Journal of Physical Chemistry C, 2011, 115, 17227-17236.	1.5	21
70	Rapid Catch and Signal (RES) Platform Technology: Multiplexed Three-Color, Microwave-Accelerated Metal-Enhanced Fluorescence 20 Second DNA Assays. Biophysical Journal, 2011, 100, 137a-138a.	0.2	1
71	Singlet Oxygen Phosphorescence Enhancement by Silver Islands Films. Journal of Physical Chemistry C, 2011, 115, 16275-16281.	1.5	26
72	Metal-enhanced photoluminescence from carbon nanodots. Chemical Communications, 2011, 47, 5313.	2.2	60

#	Article	IF	CITATIONS
73	Ultra-Fast and Sensitive Detection of Non-Typhoidal Salmonella Using Microwave-Accelerated Metal-Enhanced Fluorescence ("MAMEFâ€). PLoS ONE, 2011, 6, e18700.	1.1	33
74	Two-color, 30 second microwave-accelerated Metal-Enhanced Fluorescence DNA assays: A new Rapid Catch and Signal (RCS) technology. Journal of Immunological Methods, 2011, 366, 1-7.	0.6	22
75	Journal of Fluorescence Annual Editorial Board Dinner. Journal of Fluorescence, 2011, 21, 473-473.	1.3	0
76	Metal enhanced fluorescence of the fluorescent brightening agent Tinopal-CBX near silver island film. Dyes and Pigments, 2011, 91, 225-230.	2.0	14
77	Metal-enhanced fluorescence based calcium detection: Greater than 100-fold increase in signal/noise using Fluo-3 or Fluo-4 and silver nanostructures. Sensors and Actuators B: Chemical, 2011, 152, 82-87.	4.0	17
78	JoF Rejection Rate Exceeds 55%. Journal of Fluorescence, 2010, 20, 1-1.	1.3	2
79	An evaluation of chemical photoreactivity and the relationship to phototoxicity. Regulatory Toxicology and Pharmacology, 2010, 58, 224-232.	1.3	35
80	Indium nanodeposits: A substrate for metal-enhanced fluorescence in the ultraviolet spectral region. Journal of Applied Physics, 2010, 108, .	1.1	31
81	Interactions of Fluorophores with Iron Nanoparticles: Metal-Enhanced Fluorescence. Journal of Physical Chemistry C, 2010, 114, 7575-7581.	1.5	23
82	Metal-Enhanced Fluorescence from Silverâ^'SiO ₂ â^'Silver Nanoburger Structures. Langmuir, 2010, 26, 12371-12376.	1.6	22
83	Metal-enhanced chemiluminescence from chromium, copper, nickel, and zinc nanodeposits: Evidence for a second enhancement mechanism in metal-enhanced fluorescence. Applied Physics Letters, 2010, 97, 133103.	1.5	14
84	Metal-enhanced fluorescence from thermally stable rhodium nanodeposits. Journal of Materials Chemistry, 2010, 20, 8600.	6.7	14
85	Fixed-angle observation of surface plasmon coupled chemiluminescence from palladium thin films. Applied Physics Letters, 2009, 95, 123117.	1.5	5
86	Metal-enhanced bioluminescence: An approach for monitoring biological luminescent processes. Applied Physics Letters, 2009, 94, .	1.5	26
87	Voltage-Gated Metal-Enhanced Fluorescence II: Effects of Fluorophore Concentration on the Magnitude of the Gated-Current. Journal of Fluorescence, 2009, 19, 369-374.	1.3	5
88	New Regional Editor for India: Professor Amitabha Chattopadhyay. Journal of Fluorescence, 2009, 19, 189-190.	1.3	1
89	Voltage-Gated Metal-Enhanced Fluorescence. Journal of Fluorescence, 2009, 19, 363-367.	1.3	3
90	The Who's Who in Fluorescence 2009 Volume. Journal of Fluorescence, 2009, 19, 387-387.	1.3	0

#	Article	IF	CITATIONS
91	Wavelength-Ratiometric Plasmon Light Scattering-Based Immunoassays. Plasmonics, 2009, 4, 267-272.	1.8	13
92	Directional surface plasmon coupled chemiluminescence from nickel thin films: Fixed angle observation. Chemical Physics Letters, 2009, 473, 120-125.	1.2	5
93	Wavelength Dependence of Metal-Enhanced Fluorescence. Journal of Physical Chemistry C, 2009, 113, 12095-12100.	1.5	99
94	Broad Wavelength Range Metal-Enhanced Fluorescence Using Nickel Nanodeposits. Journal of Physical Chemistry C, 2009, 113, 15811-15816.	1.5	31
95	Directional, Broad, and Fixed Angle Surface Plasmon Coupled Fluorescence from Iron Thin Films. Journal of Physical Chemistry C, 2009, 113, 20535-20538.	1.5	6
96	Sonication-Assisted Metal-Enhanced Fluorescence-Based Bioassays. Analytical Chemistry, 2009, 81, 4713-4719.	3.2	14
97	Metal-enhanced chemiluminescence: advanced chemiluminescence concepts for the 21st century. Chemical Society Reviews, 2009, 38, 2556.	18.7	131
98	Plasmonic Electricity: A Digital form of Metal-Enhanced Fluorescence. Biophysical Journal, 2009, 96, 45a-46a.	0.2	0
99	Directional Surface Plasmon Coupled Luminescence for Analytical Sensing Applications: Which Metal, What Wavelength, What Observation Angle?. Analytical Chemistry, 2009, 81, 6913-6922.	3.2	58
100	Use of surface plasmon-coupled emission for enhancing light transmission through Top-Emitting Organic Light Emitting Diodes. Thin Solid Films, 2008, 516, 1977-1983.	0.8	10
101	The Journal of Fluorescence Expands Further with New Regional Editors. Journal of Fluorescence, 2008, 18, 237-237.	1.3	1
102	The Who's Who in Fluorescence Annual Volume Breaks New Ground. Journal of Fluorescence, 2008, 18, 761-761.	1.3	0
103	The Journal of the Fluorescence Moves to a New Home. Journal of Fluorescence, 2008, 18, 1027-1027.	1.3	0
104	Plasmonics is Now Indexed on Thompson's ISI Database. Plasmonics, 2008, 3, 1-1.	1.8	0
105	A Review of an Ultrafast and Sensitive Bioassay Platform Technology: Microwave-accelerated Metal-enhanced Fluorescence. Plasmonics, 2008, 3, 89-101.	1.8	37
106	Plasmonics First Impact Factor of 2.765. Plasmonics, 2008, 3, 47-47.	1.8	0
107	Plasmonics Moves to a New Home. Plasmonics, 2008, 3, 109-109.	1.8	0
108	Metal-enhanced fluorescence from paper substrates: Modified spectral properties of dyes for potential high-throughput surface analysis and assays and as an anti-counterfeiting technology. Dyes and Pigments, 2008, 77, 545-549.	2.0	27

#	Article	IF	CITATIONS
109	Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE). Chemical Physics Letters, 2008, 452, 162-167.	1.2	72
110	Angular-dependent metal-enhanced fluorescence from silver island films. Chemical Physics Letters, 2008, 453, 222-228.	1.2	38
111	Metal-enhanced excimer (P-type) fluorescence. Chemical Physics Letters, 2008, 458, 147-151.	1.2	17
112	Silver island nanodeposits to enhance surface plasmon coupled fluorescence from copper thin films. Chemical Physics Letters, 2008, 464, 216-219.	1.2	20
113	Microwave-accelerated surface plasmon-coupled directional luminescence 2: A platform technology for ultra fast and sensitive target DNA detection in whole blood. Journal of Immunological Methods, 2008, 331, 103-113.	0.6	24
114	Extraction and Detection of DNA from <i>Bacillus anthracis</i> Spores and the Vegetative Cells within 1 min. Analytical Chemistry, 2008, 80, 4125-4132.	3.2	50
115	Metal-Enhanced Fluorescence from Chromium Nanodeposits. Journal of Physical Chemistry C, 2008, 112, 17969-17973.	1.5	41
116	Surface Plasmon Coupled Fluorescence in the Ultraviolet and Visible Spectral Regions Using Zinc Thin Films. Analytical Chemistry, 2008, 80, 7304-7312.	3.2	49
117	Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films. Journal of Physical Chemistry C, 2008, 112, 18368-18375.	1.5	78
118	New tools for rapid clinical and bioagent diagnostics: microwaves and plasmonic nanostructures. Analyst, The, 2008, 133, 1469.	1.7	23
119	Plasmonic engineering of singlet oxygen generation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1798-1802.	3.3	171
120	Metal-enhanced e-type fluorescence. Applied Physics Letters, 2008, 92, 013905.	1.5	22
121	Metal-enhanced superoxide generation: A consequence of plasmon-enhanced triplet yields. Applied Physics Letters, 2007, 91, 023114.	1.5	15
122	Microwave-accelerated plasmonics: application to ultrafast and ultrasensitive clinical assays. , 2007, ,		2
123	Fluorescence microscopy in a microwave cavity. Optics Express, 2007, 15, 11640.	1.7	22
124	Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore's structured emission. Applied Physics Letters, 2007, 90, 053107.	1.5	68
125	Microwave-Triggered Surface Plasmon Coupled Chemiluminescence. Journal of the American Chemical Society, 2007, 129, 9850-9851.	6.6	11
126	Metal-enhanced fluorescence from copper substrates. Applied Physics Letters, 2007, 90, 173116.	1.5	90

#	Article	IF	CITATIONS
127	Surface plasmon coupled fluorescence from copper substrates. Applied Physics Letters, 2007, 91, 151902.	1.5	21
128	Microwave-accelerated metal-enhanced fluorescence: application to detection of genomic and exosporium anthrax DNA in <30 seconds. Analyst, The, 2007, 132, 1130.	1.7	43
129	Microwave-accelerated metal-enhanced fluorescence: an ultra-fast and sensitive DNA sensing platform. Analyst, The, 2007, 132, 1122.	1.7	32
130	Angular-dependent metal-enhanced fluorescence from silver colloid-deposited films: opportunity for angular-ratiometric surface assays. Analyst, The, 2007, 132, 1112.	1.7	23
131	Spatial and Temporal Control of Microwave Triggered Chemiluminescence:  A Protein Detection Platform. Analytical Chemistry, 2007, 79, 7042-7052.	3.2	26
132	Metal-Enhanced Surface Plasmon-Coupled Phosphorescence. Journal of Physical Chemistry C, 2007, 111, 6051-6059.	1.5	36
133	Microwave-Accelerated Ultrafast Nanoparticle Aggregation Assays Using Gold Colloids. Analytical Chemistry, 2007, 79, 2131-2136.	3.2	28
134	Metal-Enhanced Fluorescence of Phycobiliproteins from Heterogeneous Plasmonic Nanostructures. Journal of Physical Chemistry C, 2007, 111, 18856-18863.	1.5	47
135	Fluorescent Coreâ^'Shell Ag@SiO2Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms. Journal of the American Chemical Society, 2007, 129, 1524-1525.	6.6	526
136	First observation of surface plasmon-coupled chemiluminescence (SPCC). Chemical Physics Letters, 2007, 435, 114-118.	1.2	32
137	Microwave-Accelerated Surface Plasmon-Coupled Directional Luminescence: Application to fast and sensitive assays in buffer, human serum and whole blood. Journal of Immunological Methods, 2007, 323, 55-64.	0.6	39
138	Metal Enhanced Fluorescence Solution-based Sensing Platform 2: Fluorescent Core-Shell Ag@SiO2 Nanoballs. Journal of Fluorescence, 2007, 17, 127-131.	1.3	80
139	Microwave-Triggered Chemiluminescence with Planar Geometrical Aluminum Substrates: Theory, Simulation and Experiment. Journal of Fluorescence, 2007, 17, 279-287.	1.3	17
140	Metal-enhanced Singlet Oxygen Generation: A Consequence of Plasmon Enhanced Triplet Yields. Journal of Fluorescence, 2007, 17, 345-349.	1.3	107
141	Low Temperature Metal-Enhanced Fluorescence. Journal of Fluorescence, 2007, 17, 627-631.	1.3	15
142	Journal of Fluorescence Special Issue—Advances in Single Molecule Spectroscopy. Journal of Fluorescence, 2007, 17, 591-591.	1.3	0
143	Real-time Thermal Imaging of Microwave Accelerated Metal-Enhanced Fluorescence (MAMEF) Based Assays on Sapphire Plates. Journal of Fluorescence, 2007, 17, 639-642.	1.3	8
144	Plasmonics Special Issue—Advances in Metal–Molecular Interactions. Plasmonics, 2007, 2, 95-95.	1.8	2

#	Article	IF	CITATIONS
145	Plasmonic DNA Technology. Plasmonics, 2007, 2, 163-163.	1.8	1
146	Metal-enhanced chemiluminescence: Radiating plasmons generated from chemically induced electronic excited states. Applied Physics Letters, 2006, 88, 173104.	1.5	66
147	Metal-Enhanced Phosphorescence:Â Interpretation in Terms of Triplet-Coupled Radiating Plasmons. Journal of Physical Chemistry B, 2006, 110, 25108-25114.	1.2	89
148	Multicolor Directional Surface Plasmon-Coupled Chemiluminescence. Journal of Physical Chemistry B, 2006, 110, 22644-22651.	1.2	21
149	Metal-Enhanced Fluorescence-Based RNA Sensing. Journal of the American Chemical Society, 2006, 128, 4206-4207.	6.6	168
150	Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. Journal of Materials Chemistry, 2006, 16, 2846.	6.7	95
151	Microwave Triggered Metal Enhanced Chemiluminescence:Â Quantitative Protein Determination. Analytical Chemistry, 2006, 78, 8020-8027.	3.2	44
152	Multicolor Microwave-Triggered Metal-Enhanced Chemiluminescence. Journal of the American Chemical Society, 2006, 128, 13372-13373.	6.6	44
153	Fast and sensitive DNA hybridization assays using microwave-accelerated metal-enhanced fluorescence. Biochemical and Biophysical Research Communications, 2006, 348, 612-617.	1.0	40
154	Metal-enhanced phosphorescence (MEP). Chemical Physics Letters, 2006, 427, 432-437.	1.2	57
155	Surface plasmon coupled phosphorescence (SPCP). Chemical Physics Letters, 2006, 432, 610-615.	1.2	18
156	Metal-enhanced S2 fluorescence from azulene. Chemical Physics Letters, 2006, 432, 528-532.	1.2	23
157	Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF): Application to Ultra Fast and Sensitive Clinical Assays. Journal of Fluorescence, 2006, 16, 3-8.	1.3	44
158	Technical and Design Notes. Journal of Fluorescence, 2006, 16, 277-277.	1.3	0
159	Metal-Enhanced Chemiluminescence. Journal of Fluorescence, 2006, 16, 295-299.	1.3	52
160	The Journal of Fluorescence Impact Number Climbs for the 5th Year Running to 2.038. Journal of Fluorescence, 2006, 16, 623-623.	1.3	1
161	Microwave-Triggered Metal-Enhanced Chemiluminescence (MT-MEC): Application to Ultra-fast and Ultra-sensitive Clinical Assays. Journal of Fluorescence, 2006, 16, 641-647.	1.3	11
162	Metal-Enhanced Fluorescence from Gold Surfaces: Angular Dependent Emission. Journal of Fluorescence, 2006, 17, 7-13.	1.3	89

#	Article	IF	CITATIONS
163	Wavelength-ratiometric and colorimetric probes for glucose determination. Dyes and Pigments, 2006, 68, 159-163.	2.0	18
164	Microwave-Accelerated and Metal-Enhanced Fluorescence Myoglobin Detection on Silvered Surfaces: Potential Application to Myocardial Infarction Diagnosis. Plasmonics, 2006, 1, 53-59.	1.8	37
165	Plasmonics—A Vision for the Future. Plasmonics, 2006, 1, 1-2.	1.8	3
166	Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF) with silver colloids in 96-well plates: Application to ultra fast and sensitive immunoassays, High Throughput Screening and drug discovery. Journal of Immunological Methods, 2006, 312, 137-147.	0.6	55
167	Metal-Enhanced Fluorescence: Application to High-Throughput Screening and Drug Discovery. , 2005, , 603-666.		5
168	A wavelength?ratiometric fluoride-sensitive probe based on the quinolinium nucleus and boronic acid moiety. Sensors and Actuators B: Chemical, 2005, 104, 103-110.	4.0	66
169	Boronic acid fluorescent sensors for monosaccharide signaling based on the 6-methoxyquinolinium heterocyclic nucleus: progress toward noninvasive and continuous glucose monitoring. Bioorganic and Medicinal Chemistry, 2005, 13, 113-119.	1.4	76
170	Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Current Opinion in Chemical Biology, 2005, 9, 538-544.	2.8	279
171	Analytical techniques. Current Opinion in Chemical Biology, 2005, 9, 488.	2.8	0
172	A glucose-sensing contact lens: from bench top to patient. Current Opinion in Biotechnology, 2005, 16, 100-107.	3.3	93
173	Metal-enhanced fluorescence: an emerging tool in biotechnology. Current Opinion in Biotechnology, 2005, 16, 55-62.	3.3	702
174	Rapid Deposition of Triangular Silver Nanoplates on Planar Surfaces:  Application to Metal-Enhanced Fluorescence. Journal of Physical Chemistry B, 2005, 109, 6247-6251.	1.2	202
175	Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date. Analytical and Bioanalytical Chemistry, 2005, 382, 926-933.	1.9	155
176	Cyanide-sensitive fluorescent probes. Dyes and Pigments, 2005, 64, 49-55.	2.0	110
177	Author Impact Measure (AIM): An Author Publication Statistic for the Who's Who in Fluorescence Volume. Journal of Fluorescence, 2005, 15, 905-905.	1.3	0
178	Celebrating 15 years of Publishing Excellence: No. 2. Journal of Fluorescence, 2005, 15, 827-827.	1.3	0
179	The New Society of Fluorescence. Journal of Fluorescence, 2005, 15, 901-901.	1.3	0
180	Celebrating 15 years of the Journal of Fluorescence. Journal of Fluorescence, 2005, 15, 1-1.	1.3	0

#	Article	IF	CITATIONS
181	Enhanced Ratiometric pH Sensing Using SNAFL-2 on Silver Island Films: Metal-enhanced Fluorescence Sensing. Journal of Fluorescence, 2005, 15, 37-40.	1.3	61
182	Enhanced Lanthanide Luminescence Using Silver Nanostructures: Opportunities for a New Class of Probes with Exceptional Spectral Characteristics. Journal of Fluorescence, 2005, 15, 53-59.	1.3	41
183	The Journal of Fluorescence Can Now Be Found on PubMed. Journal of Fluorescence, 2005, 15, 97-97.	1.3	0
184	Metal-Enhanced Fluorescence from Plastic Substrates. Journal of Fluorescence, 2005, 15, 99-104.	1.3	54
185	The New Society of Fluorescence. Journal of Fluorescence, 2005, 15, 195-195.	1.3	0
186	Author Impact Measure (AIM): An Author Publication Statistic for the Who's Who in Fluorescence Volume. Journal of Fluorescence, 2005, 15, 461-461.	1.3	0
187	Lanthanides. Journal of Fluorescence, 2005, 15, 467-467.	1.3	0
188	The New Society of Fluorescence. Journal of Fluorescence, 2005, 15, 627-627.	1.3	0
189	Annealed Silver-Island Films for Applications in Metal-Enhanced Fluorescence: Interpretation in Terms of Radiating Plasmons. Journal of Fluorescence, 2005, 15, 643-654.	1.3	257
190	Angular-dependent polarization-based plasmon light scattering for bioaffinity sensing. Applied Physics Letters, 2005, 87, 234108.	1.5	16
191	Ophthalmic Glucose Monitoring Using Disposable Contact Lenses. , 2005, 2005, 363-397.		2
192	Nanogold Plasmon Resonance-Based Glucose Sensing. 2. Wavelength-Ratiometric Resonance Light Scattering. Analytical Chemistry, 2005, 77, 2007-2014.	3.2	160
193	Enhanced Fluorescence Cyanide Detection at Physiologically Lethal Levels:Â Reduced ICT-Based Signal Transduction. Journal of the American Chemical Society, 2005, 127, 3635-3641.	6.6	382
194	Fluorescence sensors for monosaccharides based on the 6-methylquinolinium nucleus and boronic acid moiety: potential application to ophthalmic diagnostics. Talanta, 2005, 65, 762-768.	2.9	76
195	Wavelength-ratiometric near-physiological pH sensors based on 6-aminoquinolinium boronic acid probes. Talanta, 2005, 66, 569-574.	2.9	25
196	Fast and Slow Deposition of Silver Nanorods on Planar Surfaces:Â Application to Metal-Enhanced Fluorescence. Journal of Physical Chemistry B, 2005, 109, 3157-3162.	1.2	209
197	Microwave-Accelerated Metal-Enhanced Fluorescence:Â Platform Technology for Ultrafast and Ultrabright Assays. Analytical Chemistry, 2005, 77, 8057-8067.	3.2	119
198	Anion Sensing Using Quinolinium Based Boronic Acid Probes. Current Analytical Chemistry, 2005, 1, 157-170.	0.6	40

#	Article	IF	CITATIONS
199	Ophthalmic glucose sensing: a novel monosaccharide sensing disposable and colorless contact lens. Analyst, The, 2004, 129, 516.	1.7	40
200	Editorial: The Journal Is Making Good Progress. Journal of Fluorescence, 2004, 14, 3.	1.3	0
201	Directional Surface Plasmon Coupled Emission. Journal of Fluorescence, 2004, 14, 119-123.	1.3	44
202	Editorial: Annual Reviews in Fluorescence 2003. Journal of Fluorescence, 2004, 14, 127.	1.3	0
203	Advances in Surface-Enhanced Fluorescence. Journal of Fluorescence, 2004, 14, 425-441.	1.3	293
204	Editorial: Plasmonics. Journal of Fluorescence, 2004, 14, 329.	1.3	2
205	Ophthalmic Glucose Monitoring Using Disposable Contact Lenses—A Review. Journal of Fluorescence, 2004, 14, 617-633.	1.3	83
206	Editorial: Progress in Glucose Sensing. Journal of Fluorescence, 2004, 14, 475.	1.3	2
207	Topical News Articles. Journal of Fluorescence, 2004, 14, 661.	1.3	0
208	Author Impact Measure (AIM): An Author Publication Statistic for the Who's Who in Fluorescence Volume. Journal of Fluorescence, 2004, 14, 663.	1.3	0
209	Advances in Anion Sensing. Journal of Fluorescence, 2004, 14, 665.	1.3	Ο
210	Metal-Enhanced Fluorescence Solution-Based Sensing Platform. Journal of Fluorescence, 2004, 14, 677-679.	1.3	122
211	Wavelength–Ratiometric Probes for the Selective Detection of Fluoride Based on the 6-Aminoquinolinium Nucleus and Boronic Acid Moiety. Journal of Fluorescence, 2004, 14, 693-703.	1.3	30
212	Complexation of polysaccharide and monosaccharide with thiolate boronic acid capped on silver nanoparticle. Analytical Biochemistry, 2004, 332, 253-260.	1.1	44
213	Roughened silver electrodes for use in metal-enhanced fluorescence. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 1977-1983.	2.0	33
214	Excitation and emission wavelength ratiometric cyanide-sensitive probes for physiological sensing. Analytical Biochemistry, 2004, 327, 82-90.	1.1	81
215	Nanogold-plasmon-resonance-based glucose sensing. Analytical Biochemistry, 2004, 330, 145-155.	1.1	216
216	Tunable plasmonic glucose sensing based on the dissociation of Con A-aggregated dextran-coated gold colloids. Analytica Chimica Acta, 2004, 517, 139-144.	2.6	60

#	Article	IF	CITATIONS
217	Fluorescence intensity and lifetime-based cyanide sensitive probes for physiological safeguard. Analytica Chimica Acta, 2004, 522, 9-17.	2.6	63
218	A wavelength-ratiometric pH sensitive probe based on the boronic acid moiety and suppressed sugar response. Dyes and Pigments, 2004, 61, 227-234.	2.0	22
219	Aggregation of Silver Nanoparticleâ `Dextran Adducts with Concanavalin A and Competitive Complexation with Glucose. Journal of Physical Chemistry B, 2004, 108, 12210-12214.	1.2	54
220	Noninvasive Continuous Monitoring of Physiological Glucose Using a Monosaccharide-Sensing Contact Lens. Analytical Chemistry, 2004, 76, 610-618.	3.2	142
221	Silver Fractal-like Structures for Metal-Enhanced Fluorescence: Enhanced Fluorescence Intensities and Increased Probe Photostabilities. Journal of Fluorescence, 2003, 13, 267-276.	1.3	76
222	Luminescent Blinking from Noble-Metal Nanostructures: New Probes for Localization and Imaging. Journal of Fluorescence, 2003, 13, 297-299.	1.3	13
223	A Glucose Sensing Contact Lens: A Non-Invasive Technique for Continuous Physiological Glucose Monitoring. Journal of Fluorescence, 2003, 13, 371-374.	1.3	102
224	Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence. Journal of Fluorescence, 2003, 13, 453-457.	1.3	20
225	Editorial: Who's Who In Fluorescence 2003. Journal of Fluorescence, 2003, 13, 3-3.	1.3	2
226	Fractal Silver Structures for Metal-Enhanced Fluorescence: Applications for Ultra-Bright Surface Assays and Lab-on-a-Chip-Based Nanotechnologies. Journal of Fluorescence, 2003, 13, 119-122.	1.3	14
227	Luminescent Blinking from Silver Nanostructures. Journal of Physical Chemistry B, 2003, 107, 9989-9993.	1.2	105
228	Luminescent blinking of gold nanoparticles. Chemical Physics Letters, 2003, 380, 269-272.	1.2	80
229	Enhanced photostability of ICG in close proximity to gold colloids. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2003, 59, 2611-2617.	2.0	38
230	Enhanced Fluorescence from Fluorophores on Fractal Silver Surfaces. Journal of Physical Chemistry B, 2003, 107, 8829-8833.	1.2	178
231	Electrochemical and Laser Deposition of Silver for Use in Metal-Enhanced Fluorescence. Langmuir, 2003, 19, 6236-6241.	1.6	116
232	Photodeposition of Silver Can Result in Metal-Enhanced Fluorescence. Applied Spectroscopy, 2003, 57, 526-531.	1.2	55
233	Submicrometer Spatial Resolution of Metal-Enhanced Fluorescence. Applied Spectroscopy, 2003, 57, 1592-1598.	1.2	12
234	Metal-Enhanced Fluorescence (MEF) Due to Silver Colloids on a Planar Surface:Â Potential Applications of Indocyanine Green to in Vivo Imagingâ€. Journal of Physical Chemistry A, 2003, 107, 3443-3449.	1.1	272

#	Article	IF	CITATIONS
235	Radiative decay engineering: the role of photonic mode density in biotechnology. Journal Physics D: Applied Physics, 2003, 36, R240-R249.	1.3	140
236	Metal-enhanced emission from indocyanine green: a new approach to in vivo imaging. Journal of Biomedical Optics, 2003, 8, 472.	1.4	126
237	Metal-Enhanced Fluorescence: Potential Applications in HTS. Combinatorial Chemistry and High Throughput Screening, 2003, 6, 109-117.	0.6	61
238	1- and 2-Photon Fluorescence Anisotropy Decay in Silicon Alkoxide Solâ ''Gels:Â Interpretation in Terms of Self-assembled Nanoparticles. Journal of Physical Chemistry B, 2002, 106, 3835-3841.	1.2	37
239	Sol-Gel Nanometrology: Gated Sampling Can Reveal Initial Sol Formation Kinetics. Journal of Fluorescence, 2002, 12, 113-117.	1.3	16
240	Title is missing!. Journal of Fluorescence, 2002, 12, 9-9.	1.3	1
241	The New Expanded Scope of the Journal of Fluorescence. Journal of Fluorescence, 2002, 12, 7-7.	1.3	0
242	Editorial: The Changing Face of Fluorescence: Addressing the Changes. Journal of Fluorescence, 2002, 12, 1-2.	1.3	4
243	Title is missing!. Journal of Fluorescence, 2002, 12, 11-13.	1.3	21
244	Title is missing!. Journal of Fluorescence, 2002, 12, 131-133.	1.3	10
245	Methods and Applications of Fluorescence. Journal of Fluorescence, 2002, 12, 119-119.	1.3	2
246	Editorial: Metal-Enhanced Fluorescence. Journal of Fluorescence, 2002, 12, 121-129.	1.3	795
247	Title is missing!. Journal of Fluorescence, 2002, 12, 135-137.	1.3	20
248	Topical News Articles. Journal of Fluorescence, 2002, 12, 485-485.	1.3	0
249	The New Society of Fluorescence. Journal of Fluorescence, 2002, 12, 295-295.	1.3	0
250	and Multiphoton Excited Fluorescence Near Metallic Silver Islands: Metallic Islands Can Increase Probe Photostability. Journal of Fluorescence, 2002, 12, 299-302.	1.3	26
251	Title is missing!. Journal of Fluorescence, 2002, 12, 343-367.	1.3	30
252	Editorial: The Changing Face of Fluorescence: One Year Later. Journal of Fluorescence, 2002, 12, 293-293.	1.3	0

#	Article	IF	CITATIONS
253	Who's Who in Fluorescence. Journal of Fluorescence, 2002, 12, 487-487.	1.3	Ο
254	The Nanomorphological and Kinetic Evolution of Soft-Solids as Probed by Fluorescence. Journal of Fluorescence, 2002, 12, 297-297.	1.3	0
255	Call for Informative Editorials. Journal of Fluorescence, 2002, 12, 495-495.	1.3	0
256	Optical halide sensing using fluorescence quenching: theory, simulations and applications - a review. Measurement Science and Technology, 2001, 12, R53-R88.	1.4	246
257	Chloride sensitive probes for biological applications. Dyes and Pigments, 2001, 48, 227-231.	2.0	17
258	Fluorescent indolium dyes for applications in aqueous halide sensing—part 2: the repeated alkylation of Harmane post quaternisation. Dyes and Pigments, 2001, 50, 151-155.	2.0	1
259	Chloride-Sensitive Fluorescent Indicators. Analytical Biochemistry, 2001, 293, 60-66.	1.1	69
260	Halide sensing using the SPQ molecule. Sensors and Actuators B: Chemical, 2001, 72, 188-195.	4.0	28
261	Fluorescent dyes bound to hydrophilic copolymers: Applications in aqueous halide sensing. Journal of Applied Polymer Science, 2000, 76, 603-615.	1.3	13
262	Cluster dynamics, growth and syneresis during silica hydrogel polymerisation. Chemical Physics Letters, 2000, 320, 229-236.	1.2	11
263	Optical thin film polymeric sensors for the determination of aqueous chloride, bromide and iodide ions at high pH, based on the quenching of fluorescence of two acridinium dyes. Dyes and Pigments, 2000, 45, 243-251.	2.0	43
264	A halide sensor based on the quenching of fluorescence of an immobilised indolium salt. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 137, 145-153.	2.0	11
265	New fluorescent quinolinium dyes— applications in nanometre particle sizing. Dyes and Pigments, 2000, 44, 69-74.	2.0	29
266	Title is missing!. Journal of Fluorescence, 2000, 10, 421-421.	1.3	1
267	Sol-gel particle growth studied using fluorescence anisotropy: An alternative to scattering techniques. Physical Review E, 2000, 62, 2977-2980.	0.8	46
268	A compact optical flow cell for use in aqueous halide determination. Measurement Science and Technology, 1999, 10, N34-N37.	1.4	10
269	New fluorescent indolium and quinolinium dyes for applications in aqueous halide sensing. Dyes and Pigments, 1999, 43, 59-63.	2.0	13
270	Probing the Sol-Gel Transition in SiO2 Hydrogels—A New Application of Near-Infrared Fluorescence. Journal of Fluorescence, 1999, 9, 73-79.	1.3	10

#	Article	IF	CITATIONS
271	Optical Thin-Film Sensors for the Determination of Aqueous Halide Ions. Journal of Fluorescence, 1999, 9, 163-171.	1.3	9
272	New indolium and quinolinium dyes sensitive to aqueous halide ions at physiological concentrations. Journal of Heterocyclic Chemistry, 1999, 36, 949-951.	1.4	16