
Eric C D Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6754883/publications.pdf Version: 2024-02-01

FRIC C D TAN

#	Article	IF	CITATIONS
1	Techno-economic assessment for the production of algal fuels and value-added products: opportunities for high-protein microalgae conversion. , 2022, 15, 8.		16
2	Separation of bio-based glucaric acid <i>via</i> antisolvent crystallization and azeotropic drying. Green Chemistry, 2022, 24, 1350-1361.	9.0	4
3	Recovery of low molecular weight compounds from alkaline pretreatment liquor <i>via</i> membrane separations. Green Chemistry, 2022, 24, 3152-3166.	9.0	8
4	Adoption of biofuels for marine shipping decarbonization: A <scp>longâ€ŧerm</scp> price and scalability assessment. Biofuels, Bioproducts and Biorefining, 2022, 16, 942-961.	3.7	8
5	Fractionation of Lignin Streams Using Tangential Flow Filtration. Industrial & Engineering Chemistry Research, 2022, 61, 4407-4417.	3.7	4
6	Early-stage evaluation of catalyst manufacturing cost and environmental impact using CatCost. Nature Catalysis, 2022, 5, 342-353.	34.4	13
7	Environmental, Economic, and Scalability Considerations of Selected Bio-Derived Blendstocks for Mixing-Controlled Compression Ignition Engines. ACS Sustainable Chemistry and Engineering, 2022, 10, 6699-6712.	6.7	13
8	Biorefinery upgrading of herbaceous biomass to renewable hydrocarbon fuels, part 1: Process modeling and mass balance analysis. Journal of Cleaner Production, 2022, , 132439.	9.3	4
9	Potential Socioeconomic and Environmental Effects of an Expanding U.S. Bioeconomy: An Assessment of Near-Commercial Cellulosic Biofuel Pathways. Environmental Science & Technology, 2021, 55, 5496-5505.	10.0	12
10	Biofuel Options for Marine Applications: Technoeconomic and Life-Cycle Analyses. Environmental Science & Technology, 2021, 55, 7561-7570.	10.0	38
11	Atomic Layer Deposition with TiO ₂ for Enhanced Reactivity and Stability of Aromatic Hydrogenation Catalysts. ACS Catalysis, 2021, 11, 8538-8549.	11.2	24
12	Circular Bioeconomy Concepts $\hat{a} \in$ "A Perspective. Frontiers in Sustainability, 2021, 2, .	2.6	88
13	Energy and techno-economic analysis of bio-based carboxylic acid recovery by adsorption. Green Chemistry, 2021, 23, 4386-4402.	9.0	8
14	Process intensification for the biological production of the fuel precursor butyric acid from biomass. Cell Reports Physical Science, 2021, 2, 100587.	5.6	12
15	Biological valorization of natural gas for the production of lactic acid: Techno-economic analysis and life cycle assessment. Biochemical Engineering Journal, 2020, 158, 107500.	3.6	25
16	Methanol to high-octane gasoline within a market-responsive biorefinery concept enabled by catalysis. Nature Catalysis, 2019, 2, 632-640.	34.4	33
17	Understanding the role of Fischer–Tropsch reaction kinetics in technoâ€economic analysis for coâ€conversion of natural gas and biomass to liquid transportation fuels. Biofuels, Bioproducts and Biorefining, 2019, 13, 1306-1320.	3.7	11
18	An integrated sustainability evaluation of highâ€octane gasoline production from lignocellulosic biomass. Biofuels, Bioproducts and Biorefining, 2019, 13, 1439-1453.	3.7	8

Eric C D Tan

#	Article	IF	CITATIONS
19	Enhanced Catalyst Durability for Bio-Based Adipic Acid Production by Atomic Layer Deposition. Joule, 2019, 3, 2219-2240.	24.0	12
20	Applying Environmental Release Inventories and Indicators to the Evaluation of Chemical Manufacturing Processes in Early Stage Development. ACS Sustainable Chemistry and Engineering, 2019, 7, 10937-10950.	6.7	26
21	High-Octane Gasoline from Biomass: Experimental, Economic, and Environmental Assessment. Applied Energy, 2019, 241, 25-33.	10.1	25
22	Investigation of biochemical biorefinery sizing and environmental sustainability impacts for conventional bale system and advanced uniform biomass logistics designs. Biofuels, Bioproducts and Biorefining, 2018, 12, 325-325.	3.7	1
23	Environmental, Economic, and Scalability Considerations and Trends of Selected Fuel Economy-Enhancing Biomass-Derived Blendstocks. ACS Sustainable Chemistry and Engineering, 2018, 6, 561-569.	6.7	28
24	Economic and environmental potentials for natural gas to enhance biomass-to-liquid fuels technologies. Green Chemistry, 2018, 20, 5358-5373.	9.0	26
25	Reduction of greenhouse gas and criteria pollutant emissions by direct conversion of associated flare gas to synthetic fuels at oil wellheads. International Journal of Energy and Environmental Engineering, 2018, 9, 305-321.	2.5	12
26	Driving towards cost-competitive biofuels through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration. Energy and Environmental Science, 2018, 11, 2904-2918.	30.8	95
27	Lifeâ€cycle analysis of integrated biorefineries with coâ€production of biofuels and bioâ€based chemicals: coâ€product handling methods and implications. Biofuels, Bioproducts and Biorefining, 2018, 12, 815-833.	3.7	53
28	Renewable acrylonitrile production. Science, 2017, 358, 1307-1310.	12.6	122
29	Comparative technoâ€economic analysis and process design for indirect liquefaction pathways to distillateâ€range fuels via biomassâ€derived oxygenated intermediates upgrading. Biofuels, Bioproducts and Biorefining, 2017, 11, 41-66.	3.7	39
30	Estimation of economic impacts of cellulosic biofuel production: a comparative analysis of three biofuel pathways. Biofuels, Bioproducts and Biorefining, 2016, 10, 281-298.	3.7	14
31	Conceptual process design and economics for the production of highâ€octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates. Biofuels, Bioproducts and Biorefining, 2016, 10, 17-35.	3.7	45
32	Perspectives on Process Analysis for Advanced Biofuel Production. , 2015, , 33-60.		2
33	Strategic supply system design – a holistic evaluation of operational and production cost for a biorefinery supply chain. Biofuels, Bioproducts and Biorefining, 2015, 9, 648-660.	3.7	69
34	Direct production of gasoline and diesel fuels from biomass via integrated hydropyrolysis and hydroconversion process—A technoâ€economic analysis. Environmental Progress and Sustainable Energy, 2014, 33, 609-617.	2.3	40
35	Comparative technoâ€economic analysis and reviews of nâ€butanol production from corn grain and corn stover. Biofuels, Bioproducts and Biorefining, 2014, 8, 342-361.	3.7	80
36	Technoâ€economic analysis and lifeâ€cycle assessment of cellulosic isobutanol and comparison with cellulosic ethanol and nâ€butanol. Biofuels, Bioproducts and Biorefining, 2014, 8, 30-48.	3.7	185

Eric C D Tan

#	Article	IF	CITATIONS
37	Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preâ€processing supply system designs. Biofuels, Bioproducts and Biorefining, 2014, 8, 545-567.	3.7	40
38	Technoeconomic Analysis for the Production of Mixed Alcohols via Indirect Gasification of Biomass Based on Demonstration Experiments. Industrial & Engineering Chemistry Research, 2014, 53, 12149-12159.	3.7	25
39	Investigation of biochemical biorefinery sizing and environmental sustainability impacts for conventional bale system and advanced uniform biomass logistics designs. Biofuels, Bioproducts and Biorefining, 2013, 7, 282-302.	3.7	73
40	CHAPTER 19. Techno-Economic Analysis and Life-Cycle Assessment of Lignocellulosic Biomass to Sugars Using Various Pretreatment Technologies. RSC Energy and Environment Series, 2013, , 358-380.	0.5	4
41	Ethylene hydroformylation on graphite nanofiber supported rhodium catalysts. Catalysis Today, 2001, 65, 19-29.	4.4	55
42	Further Studies of the Interaction of Hydrogen with Graphite Nanofibers. Journal of Physical Chemistry B, 1999, 103, 10572-10581.	2.6	233
43	Mechanistic Studies of the NO–CO Reaction onRh/Al2O3under Net-Oxidizing Conditions. Journal of Catalysis, 1998, 173, 95-104.	6.2	56