
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6754818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Temperature and Illumination on the Electrical Characteristics of Polymer–Fullerene Bulk-Heterojunction Solar Cells. Advanced Functional Materials, 2004, 14, 38-44.	7.8	519
2	The Relation Between Openâ€Circuit Voltage and the Onset of Photocurrent Generation by Chargeâ€Transfer Absorption in Polymer : Fullerene Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2008, 18, 2064-2070.	7.8	503
3	Phase Diagram of P3HT/PCBM Blends and Its Implication for the Stability of Morphology. Journal of Physical Chemistry B, 2009, 113, 1587-1591.	1.2	333
4	Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells. Solar Energy Materials and Solar Cells, 2008, 92, 753-760.	3.0	261
5	Formation of a Ground-State Charge-Transfer Complex in Polyfluorene//[6,6]-Phenyl-C61 Butyric Acid Methyl Ester (PCBM) Blend Films and Its Role in the Function of Polymer/PCBM Solar Cells. Advanced Functional Materials, 2007, 17, 451-457.	7.8	248
6	Low Band Gap Donorâ^'Acceptor Conjugated Polymers toward Organic Solar Cells Applications. Macromolecules, 2007, 40, 65-72.	2.2	217
7	Disclosure of the nanostructure of MDMO-PPV:PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM. Synthetic Metals, 2003, 138, 243-247.	2.1	199
8	Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique. Applied Physics Letters, 2005, 86, 112104.	1.5	184
9	Life cycle analyses of organic photovoltaics: a review. Energy and Environmental Science, 2013, 6, 3136.	15.6	180
10	Strategy for Enhancing the Dielectric Constant of Organic Semiconductors Without Sacrificing Charge Carrier Mobility and Solubility. Advanced Functional Materials, 2015, 25, 150-157.	7.8	178
11	Porphyrinâ€Based Bulk Heterojunction Organic Photovoltaics: The Rise of the Colors of Life. Advanced Energy Materials, 2015, 5, 1500218.	10.2	167
12	Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials. Synthetic Metals, 2001, 125, 279-287.	2.1	166
13	Low-band gap polymers for photovoltaic applications. Thin Solid Films, 2004, 451-452, 7-11.	0.8	165
14	Observation of the subgap optical absorption in polymer-fullerene blend solar cells. Applied Physics Letters, 2006, 88, 052113.	1.5	158
15	Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 385-389.	3.0	156
16	Absorption phenomena in organic thin films for solar cell applications investigated by photothermal deflection spectroscopy. Journal of Materials Science, 2005, 40, 1413-1418.	1.7	145
17	A New Synthetic Route to a Soluble High Molecular Weight Precursor for Poly(p-phenylenevinylene) derivatives. Macromolecules, 1995, 28, 1330-1331.	2.2	140
18	Investigation of the degradation mechanisms of a variety of organic photovoltaic devices by combination of imaging techniques—the ISOS-3 inter-laboratory collaboration. Energy and Environmental Science, 2012, 5, 6521.	15.6	134

#	Article	IF	CITATIONS
19	Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: validation for coastal and inland waters. European Journal of Remote Sensing, 2018, 51, 525-542.	1.7	133
20	Efficient formation, isolation and characterization of poly(3-alkylthiophene) nanofibres: probing order as a function of side-chain length. Journal of Materials Chemistry, 2009, 19, 5424.	6.7	128
21	High dielectric constant conjugated materials for organic photovoltaics. Journal of Materials Chemistry A, 2017, 5, 24037-24050.	5.2	115
22	Effect of Alkyl Side hain Length on Photovoltaic Properties of Poly(3â€alkylthiophene)/PCBM Bulk Heterojunctions. Advanced Functional Materials, 2009, 19, 3300-3306.	7.8	114
23	The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices. RSC Advances, 2012, 2, 882-893.	1.7	108
24	Influence of Fullerene Ordering on the Energy of the Charge-Transfer State and Open-Circuit Voltage in Polymer:Fullerene Solar Cells. Journal of Physical Chemistry C, 2011, 115, 10873-10880.	1.5	95
25	A MIP-based impedimetric sensor for the detection of low-MW molecules. Biosensors and Bioelectronics, 2008, 23, 913-918.	5.3	93
26	Varying polymer crystallinity in nanofiber poly(3-alkylthiophene): PCBM solar cells: Influence on charge-transfer state energy and open-circuit voltage. Applied Physics Letters, 2009, 95, .	1.5	93
27	Alkylâ€Chainâ€Lengthâ€Independent Hole Mobility via Morphological Control with Poly(3â€alkylthiophene) Nanofibers. Advanced Functional Materials, 2010, 20, 792-802.	7.8	89
28	Novel Regiospecific MDMOâ^'PPV Copolymer with Improved Charge Transport for Bulk Heterojunction Solar Cells. Journal of Physical Chemistry B, 2004, 108, 5235-5242.	1.2	86
29	Low-bandgap conjugated polymers. A joint experimental and theoretical study of the structure of polyisothianaphthene. Macromolecules, 1992, 25, 7347-7356.	2.2	84
30	Synthesis of 3,4-Diphenyl-Substituted Poly(Thienylene Vinylene), Low-Band-Gap Polymers via the Dithiocarbamate Route. Macromolecules, 2005, 38, 19-26.	2.2	84
31	Low band-gap polymeric photovoltaic devices. Synthetic Metals, 2001, 121, 1583-1584.	2.1	80
32	Photoinduced charge transfer in composites of conjugated polymers and semiconductor nanocrystals. Nanotechnology, 2004, 15, 163-170.	1.3	80
33	Controlling the Morphology and Efficiency of Hybrid ZnO:Polythiophene Solar Cells Via Side Chain Functionalization. Advanced Energy Materials, 2011, 1, 90-96.	10.2	80
34	Thiazolo[5,4-d]thiazoles – promising building blocks in the synthesis of semiconductors for plastic electronics. RSC Advances, 2013, 3, 11418.	1.7	80
35	Molar Mass versus Polymer Solar Cell Performance: Highlighting the Role of Homocouplings. Chemistry of Materials, 2015, 27, 3726-3732.	3.2	79
36	Synthesis of poly(<i>p</i> -phenylene vinylene) materials <i>via</i> the precursor routes. Polymer Chemistry, 2012, 3, 275-285.	1.9	78

#	Article	IF	CITATIONS
37	MIP-based sensor platforms for the detection of histamine in the nano- and micromolar range in aqueous media. Sensors and Actuators B: Chemical, 2010, 148, 392-398.	4.0	76
38	A comparison between state-of-the-art â€~gilch' and â€~sulphinyl' synthesised MDMO-PPV/PCBM bulk hetero-junction solar cells. Thin Solid Films, 2002, 403-404, 247-251.	0.8	75
39	Copolymers of 3,4-Ethylenedioxythiophene and of Pyridine Alternated with Fluorene or Phenylene Units:A Synthesis, Optical Properties, and Devices. Macromolecules, 2004, 37, 4087-4098.	2.2	75
40	Improved Photovoltaic Performance of a Semicrystalline Narrow Bandgap Copolymer Based on 4 <i>H</i> -Cyclopenta[2,1- <i>b</i> :3,4- <i>b</i> ′]dithiophene Donor and Thiazolo[5,4- <i>d</i>]thiazole Acceptor Units. Chemistry of Materials, 2012, 24, 587-593.	3.2	73
41	Influence of fullerene photodimerization on the PCBM crystallization in polymer: Fullerene bulk heterojunctions under thermal stress. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1209-1214.	2.4	72
42	Enhanced Organic Solar Cell Stability by Polymer (PCPDTBT) Side Chain Functionalization. Chemistry of Materials, 2015, 27, 1332-1341.	3.2	70
43	A general synthetic route to high molecular weight poly(p-xylylene)-derivatives: a new route to poly(p-phenylene vinylene). Synthetic Metals, 1995, 69, 509-510.	2.1	65
44	New Synthesis of a Soluble High Molecular Weight Poly(arylene vinylene): Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-p-phenylene vinylene]. Polymerization and Device Properties. Macromolecules, 1999, 32, 6517-6525.	2.2	65
45	Investigation of melamine-formaldehyde cure by Fourier transform Raman spectroscopy. Vibrational Spectroscopy, 1993, 6, 55-69.	1.2	64
46	Degradation of the Formamidinium Cation and the Quantification of the Formamidinium–Methylammonium Ratio in Lead Iodide Hybrid Perovskites by Nuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 4117-4124.	1.5	64
47	Synthesis of poly(2,5-Thienylene Vinylene) and its derivatives: Low band gap materials for photovoltaics. Thin Solid Films, 2008, 516, 3978-3988.	0.8	61
48	Controlling the morphology of nanofiber-P3HT:PCBM blends for organic bulk heterojunction solar cells. Organic Electronics, 2009, 10, 1248-1251.	1.4	61
49	Influence of nanoscale phase separation on geminate versus bimolecular recombination in P3HT:fullerene blend films. Energy and Environmental Science, 2010, 3, 971.	15.6	61
50	Thermal Stability of Poly[2-methoxy-5-(2′-phenylethoxy)-1,4-phenylenevinylene] (MPE-PPV):Fullerene Bulk Heterojunction Solar Cells. Macromolecules, 2011, 44, 8470-8478.	2.2	61
51	Synthesis and Characterization of a Poly(1,3-dithienylisothianaphthene) Derivative for Bulk Heterojunction Photovoltaic Cells. Journal of Physical Chemistry B, 2001, 105, 11106-11113.	1.2	60
52	In situ conductivity measurements on polyethylenedioxythiophene derivatives with different counter ions. Synthetic Metals, 2002, 126, 193-198.	2.1	60
53	NMR study of the nanomorphology in thin films of polymer blends used in organic PV devices: MDMOâ€PPV/PCBM. Journal of Polymer Science Part A, 2008, 46, 138-145.	2.5	59
54	Identification and Quantification of Polymerization Defects in13C-Labeled Sulfinyl and Gilch OC1C10â^'PPV by NMR Spectroscopy. Macromolecules, 2003, 36, 5613-5622.	2.2	58

#	Article	IF	CITATIONS
55	Polymerization of a p-quinodimethane derivative to a precursor of poly(p-phenylene) Tj ETQq1 1 0.784314 rgBT ,	/Overlock	10 ₅₇ 50 74
56	Role of electron-hole pair formation in organic magnetoresistance. Physical Review B, 2009, 79, .	1.1	56
57	The synthesis of poly(1,4-phenylene-1,2-ethanediyl) derivatives: an adaptation of the wessling route. Synthetic Metals, 1992, 52, 125-130.	2.1	55
58	Bulk heterojunction organic solar cells based on soluble poly(thienylene vinylene) derivatives. Organic Electronics, 2008, 9, 740-746.	1.4	55
59	Kinetic Monte Carlo Modeling of the Sulfinyl Precursor Route for Poly(<i>p</i> -phenylene vinylene) Synthesis. Macromolecules, 2011, 44, 8716-8726.	2.2	55
60	lmidazolium‣ubstituted Polythiophenes as Efficient Electron Transport Materials Improving Photovoltaic Performance. Advanced Energy Materials, 2013, 3, 1180-1185.	10.2	55
61	Improved thermal stability of bulk heterojunctions based on side-chain functionalized poly(3-alkylthiophene) copolymers and PCBM. Solar Energy Materials and Solar Cells, 2013, 110, 69-76.	3.0	52
62	Towards 2D layered hybrid perovskites with enhanced functionality: introducing charge-transfer complexes <i>via</i> self-assembly. Chemical Communications, 2019, 55, 2481-2484.	2.2	51
63	A MIPâ€based biomimetic sensor for the impedimetric detection of histamine in different pH environments. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 837-843.	0.8	50
64	Determination of free melamine content in melamine-formaldehyde resins by Raman spectroscopy. Vibrational Spectroscopy, 1995, 9, 139-146.	1.2	49
65	Grignard Reactions onOrthoDicarboxylic Arene Derivatives. Synthesis of 1,3-Dithienylisothianaphthene Compounds. Journal of Organic Chemistry, 1997, 62, 1473-1480.	1.7	49
66	Conjugated polymers based on new thienylene – PPV derivatives for solar cell applications. Electrochemistry Communications, 2002, 4, 912-916.	2.3	49
67	Study of Solvent Diffusion in Polymeric Materials Using Magnetic Resonance Imaging. Macromolecules, 1995, 28, 8541-8547.	2.2	48
68	Effect of Polymer Crystallinity in P3HT:PCBM Solar Cells on Band Gap Trap States and Apparent Recombination Order. Advanced Energy Materials, 2013, 3, 466-471.	10.2	48
69	Continuous Flow Polymer Synthesis toward Reproducible Largeâ€Scale Production for Efficient Bulk Heterojunction Organic Solar Cells. ChemSusChem, 2015, 8, 3228-3233.	3.6	48
70	Quantitative magnetic resonance imaging study of water uptake by polyamide 4,6. Polymer, 2001, 42, 7943-7952.	1.8	47
71	Modelling the short-circuit current of polymer bulk heterojunction solar cells. Thin Solid Films, 2004, 451-452, 498-502.	0.8	47
72	Precursor route poly(thienylene vinylene) for organic solar cells: Photophysics and photovoltaic performance. Solar Energy Materials and Solar Cells, 2006, 90, 2815-2828.	3.0	47

#	Article	IF	CITATIONS
73	PPV-Based Conjugated Polymer Nanoparticles as a Versatile Bioimaging Probe: A Closer Look at the Inherent Optical Properties and Nanoparticle–Cell Interactions. Biomacromolecules, 2016, 17, 2562-2571.	2.6	47
74	Eco-friendly fabrication of PBDTTPD:PC71BM solar cells reaching a PCE of 3.8% using water-based nanoparticle dispersions. Organic Electronics, 2017, 42, 42-46.	1.4	47
75	Charge dissociation in polymer:fullerene bulk heterojunction solar cells with enhanced permittivity. Journal of Applied Physics, 2008, 104, .	1.1	45
76	Optimization of the Polymerization Process of Sulfinyl Precursor Polymers toward Poly(p-phenylenevinylene). Macromolecules, 1999, 32, 5728-5735.	2.2	44
77	Photoactive Blends of Poly(para-phenylenevinylene) (PPV) with Methanofullerenes from a Novel Precursor:  Photophysics and Device Performance. Journal of Physical Chemistry B, 2001, 105, 1528-1536.	1.2	44
78	New synthetic routes to poly (isothianaphthene) I. Reaction of phthalic anhydride and phthalide with phosphorus pentasulfide. Synthetic Metals, 1995, 74, 65-70.	2.1	43
79	The Gilch polymerisation towards OC1C10-PPV: indications for a radical mechanism. Polymer, 2001, 42, 5793-5796.	1.8	43
80	Synthesis of poly(p-phenylene vinylene) and derivatives via a new precursor route, the dithiocarbamate route. Polymer, 2006, 47, 123-131.	1.8	43
81	Comparison of the electrical characteristics of four 2,5-substituted poly(p-phenylene vinylene) derivatives with different side chains. Thin Solid Films, 2006, 511-512, 328-332.	0.8	42
82	Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology. Journal of Photonics for Energy, 2014, 4, 040997.	0.8	42
83	Multi-layered hybrid perovskites templated with carbazole derivatives: optical properties, enhanced moisture stability and solar cell characteristics. Journal of Materials Chemistry A, 2018, 6, 22899-22908.	5.2	42
84	Effect of molecular weight on morphology and photovoltaic properties in P3HT:PCBM solar cells. Organic Electronics, 2015, 21, 160-170.	1.4	40
85	Inducing Charge Separation in Solid-State Two-Dimensional Hybrid Perovskites through the Incorporation of Organic Charge-Transfer Complexes. Journal of Physical Chemistry Letters, 2020, 11, 824-830.	2.1	40
86	Highly Selective Route for Producing Unsymmetrically Substituted Monomers toward Synthesis of Conjugated Polymers Derived from Poly(p-phenylene vinylene). Journal of Organic Chemistry, 1999, 64, 3106-3112.	1.7	39
87	Poly(thienylene vinylene) derivatives as low band gap polymers for photovoltaic applications. Thin Solid Films, 2004, 451-452, 572-579.	0.8	39
88	Plasma Deposition of Thiophene Derivatives Under Atmospheric Pressure. Chemical Vapor Deposition, 2006, 12, 719-727.	1.4	39
89	Enhanced intrinsic stability of the bulk heterojunction active layer blend of polymer solar cells by varying the polymer side chain pattern. Organic Electronics, 2014, 15, 549-562.	1.4	39
90	Interfacial thiol–isocyanate reactions for functional nanocarriers: a facile route towards tunable morphologies and hydrophilic payload encapsulation. Chemical Communications, 2015, 51, 15858-15861.	2.2	39

#	Article	IF	CITATIONS
91	Highâ€resolution morphological and electrical characterisation of organic bulk heterojunction solar cells by scanning probe microscopy. Progress in Photovoltaics: Research and Applications, 2007, 15, 713-726.	4.4	38
92	On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses – the ISOS-3 inter-laboratory collaboration. Physical Chemistry Chemical Physics, 2012, 14, 11824.	1.3	38
93	Quantitative carbon-13 solid-state n.m.r. and FT–Raman spectroscopy in novolac resins. Polymer, 1998, 39, 5293-5300.	1.8	37
94	Influence of polymer ionization potential on the open-circuit voltage of hybrid polymer/TiO2 solar cells. Applied Physics Letters, 2008, 92, 053308.	1.5	37
95	High-Permittivity Conjugated Polyelectrolyte Interlayers for High-Performance Bulk Heterojunction Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 6309-6314.	4.0	37
96	An effective strategy to enhance the dielectric constant of organic semiconductors – CPDTTPD-based low bandgap polymers bearing oligo(ethylene glycol) side chains. Journal of Materials Chemistry C, 2018, 6, 500-511.	2.7	37
97	Identification of some important metabolites of boldenone in urine and feces of cattle by gas chromatography-mass spectrometryâ€. Analyst, The, 1998, 123, 2681-2686.	1.7	36
98	Convenient synthesis and polymerization of 5,6-disubstituted dithiophthalides toward soluble poly(isothianaphthene): An initial spectroscopic characterization of the resulting low-band-gap polymers. Journal of Polymer Science Part A, 2003, 41, 1034-1045.	2.5	36
99	Light-emitting organic field-effect transistor using an organic heterostructure within the transistor channel. Applied Physics Letters, 2006, 89, 223504.	1.5	36
100	Poly(3-alkylthiophene) nanofibers for optoelectronic devices. Journal of Materials Chemistry C, 2014, 2, 5730.	2.7	36
101	Lead-Halide Perovskites Meet Donor–Acceptor Charge-Transfer Complexes. Chemistry of Materials, 2019, 31, 6880-6888.	3.2	36
102	Tuning of PCDTBT:PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 179-188.	3.0	35
103	Generation of specifically substituted pyridines and pyridones from 2(1h) pyrazinones and acetylenes : A FMO description. Tetrahedron, 1990, 46, 5715-5732.	1.0	34
104	Use of Magnetic Resonance Imaging To Study Transport of Methanol in Poly(methyl methacrylate) at Variable Temperature. Macromolecules, 1996, 29, 5671-5677.	2.2	34
105	Verification of Radical and Anionic Polymerization Mechanisms in the Sulfinyl and the Gilch Route. Macromolecules, 2003, 36, 3035-3044.	2.2	34
106	Controlled/living polymerization towards functional poly(<i>p</i> -phenylene vinylene) materials. Polymer Chemistry, 2016, 7, 1355-1367.	1.9	34
107	Enhanced open-circuit voltage in polymer solar cells by dithieno[3,2-b:2′,3′-d]pyrrole N-acylation. Journal of Materials Chemistry A, 2014, 2, 7535-7545.	5.2	33
108	Direct arylation as a versatile tool towards thiazolo[5,4-d]thiazole-based semiconducting materials. Organic and Biomolecular Chemistry, 2014, 12, 4663-4672.	1.5	33

#	Article	IF	CITATIONS
109	Polymerization Behavior of Xanthate-Containing Monomers toward PPV Precursor Polymers:Â Study of the Elimination Behavior of Precursor Polymers and Oligomers with in-Situ FT-IR and UVâ^'Vis Analytical Techniques. Macromolecules, 2002, 35, 7902-7910.	2.2	32
110	The synthesis of regio-regular poly(3-alkyl-2,5-thienylene vinylene) derivatives using lithium bis(trimethylsilyl)amide (LHMDS) in the dithiocarbamate precursor route. Solar Energy Materials and Solar Cells, 2007, 91, 1026-1034.	3.0	32
111	Broadening the absorption of conjugated polymers by "click―functionalization with phthalocyanines. Dalton Transactions, 2011, 40, 3979.	1.6	32
112	TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaboration. Physical Chemistry Chemical Physics, 2012, 14, 11780.	1.3	32
113	Fluorination as an effective tool to increase the open-circuit voltage and charge carrier mobility of organic solar cells based on poly(cyclopenta[2,1-b:3,4-bâ€2]dithiophene-alt-quinoxaline) copolymers. Journal of Materials Chemistry A, 2015, 3, 2960-2970.	5.2	32
114	An investigation into the electronic structure of poly(isothianaphthene). Synthetic Metals, 1992, 51, 219-228.	2.1	31
115	Polymerization Mechanism of 1-[(Butylsulfi(o)nyl)methyl]-4-(halomethyl)benzene:Â The Effect of Polarizer and Leaving Group. Macromolecules, 1998, 31, 4426-4431.	2.2	31
116	Radical as well as anionic polymerisation mechanisms in the synthesis of poly(p-arylene vinylene) precursors. Polymer, 1999, 40, 6615-6617.	1.8	31
117	Low-Band-Gap Conjugated Polymers. Improved Model Compounds for the Structural Analysis of Poly(isothianaphthene). Macromolecules, 1995, 28, 4961-4969.	2.2	30
118	Synthesis and Characterization of Poly(pyridine vinylene) via the Sulfinyl Precursor Route. Macromolecules, 2001, 34, 7294-7299.	2.2	29
119	Study of the Thermal Elimination and Degradation Processes ofn-Alkylsulfinylâ^'PPV and â^'OC1C10â^'PPV Precursor Polymers with in Situ Spectroscopic Techniques. Macromolecules, 2005, 38, 1141-1147.	2.2	29
120	On the "True―Structure of Push–Pullâ€Type Lowâ€Bandgap Polymers for Organic Electronics. Advanced Electronic Materials, 2018, 4, 1700481.	2.6	29
121	Filling porous silicon pores with poly(p phenylene vinylene). Physica Status Solidi A, 2003, 197, 232-235.	1.7	28
122	The Importance of Bridging Points for Charge Transport in Webs of Conjugated Polymer Nanofibers. Advanced Functional Materials, 2013, 23, 862-869.	7.8	28
123	Quinoxaline derivatives with broadened absorption patterns. Organic and Biomolecular Chemistry, 2013, 11, 5866.	1.5	28
124	Profluorescent PPV-Based Micellar System as a Versatile Probe for Bioimaging and Drug Delivery. Biomacromolecules, 2016, 17, 4086-4094.	2.6	28
125	Phase behavior of PCBM blends with different conjugated polymers. Physical Chemistry Chemical Physics, 2011, 13, 12285.	1.3	27
126	Imidazolium-substituted ionic (co)polythiophenes: Compositional influence on solution behavior and thermal properties. Polymer, 2013, 54, 6293-6304.	1.8	27

#	Article	IF	CITATIONS
127	Kinetic and Mechanistic Study onp-Quinodimethane Formation in the Sulfinyl Precursor Route for the Polymerization of Poly(p-phenylenevinylene) (PPV). Macromolecules, 2010, 43, 7424-7433.	2.2	26
128	On the quinoid structure of poly(isothianaphthene): A vibrational spectroscopic study. Advanced Materials, 1995, 7, 1027-1030.	11.1	25
129	Metabolites in feces can be important markers for the abuse of anabolic steroids in cattleâ€. Analyst, The, 1998, 123, 2449-2452.	1.7	25
130	A general approach to precursors for poly(arylene vinylene) derivatives: Mechanism, scope and modifications. Macromolecular Symposia, 1998, 125, 189-203.	0.4	25
131	Description of the nanostructured morphology of [6,6]â€phenylâ€C ₆₁ â€butyric acid methyl ester (PCBM) by XRD, DSC and solidâ€state NMR. Magnetic Resonance in Chemistry, 2011, 49, 242-247.	1.1	25
132	Elucidating Batch-to-Batch Variation Caused by Homocoupled Side Products in Solution-Processable Organic Solar Cells. Chemistry of Materials, 2016, 28, 9088-9098.	3.2	25
133	Hysteresis-free electron currents in poly(p-phenylene vinylene) derivatives. Journal of Applied Physics, 2010, 107, .	1.1	24
134	A Three-Step Synthetic Approach to Asymmetrically Functionalized 4 <i>H</i> -Cyclopenta[2,1- <i>b</i> :3,4- <i>b′</i>]dithiophenes. Journal of Organic Chemistry, 2010, 75, 7202-7209.	1.7	24
135	Opto-electrical and morphological characterization of water soluble conjugated polymers for eco-friendly hybrid solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 3262-3268.	3.0	24
136	Diels-alder reactions of the heterodiene system in 2(1h)-pyrazinones. Tetrahedron Letters, 1986, 27, 2509-2512.	0.7	23
137	Optical Absorption Spectra of Aromatic Isothianaphthene Oligomers: Theory and Experiment. The Journal of Physical Chemistry, 1995, 99, 3932-3938.	2.9	23
138	Highly Selective Route to Unsymmetrically Substituted 1-{2-[(Butylsulfanyl)methyl]-5-(chloromethyl)-4-methoxyphenoxy}-3,7-dimethyloctane and Isomers toward Synthesis of Conjugated Polymer OC1C10 Used in LEDs: Synthesis and Optimization. Helvetica Chimica Acta, 2000, 83, 3113-3121.	1.0	23
139	Discovery of an Anionic Polymerization Mechanism for High Molecular Weight PPV Derivatives via the Sulfinyl Precursor Route. Macromolecules, 2011, 44, 7610-7616.	2.2	23
140	Molecular weight tuning of low bandgap polymers by continuous flow chemistry: increasing the applicability of PffBT4T for organic photovoltaics. Journal of Materials Chemistry A, 2017, 5, 18166-18175.	5.2	23
141	Synthesis and characterization of water-soluble poly(p-phenylene vinylene) derivatives via the dithiocarbamate precursor route. European Polymer Journal, 2011, 47, 1827-1835.	2.6	22
142	Ester-functionalized poly(3-alkylthiophene) copolymers: Synthesis, physicochemical characterization and performance in bulk heterojunction organic solar cells. Organic Electronics, 2013, 14, 523-534.	1.4	22
143	Simultaneous Enhancement of Solar Cell Efficiency and Stability by Reducing the Side Chain Density on Fluorinated PCPDTQx Copolymers. Macromolecules, 2015, 48, 3873-3882.	2.2	22
144	A direct arylation approach towards efficient small molecule organic solar cells. Journal of Materials Chemistry A, 2016, 4, 791-795.	5.2	22

#	Article	IF	CITATIONS
145	Diels-alder reactions of pyrano[3,4-b]indol-3-ones with olefinic compounds : Synthesis of (1,2-dihydro)carbazoles. Tetrahedron, 1989, 45, 6761-6770.	1.0	21
146	A reanalysis of the k3Î state of CO. Journal of Chemical Physics, 1997, 107, 8303-8310.	1.2	21
147	Relationships between Microvoid Heterogeneity and Physical Properties in Cross-Linked Elastomers:Â An NMR Imaging Study. Macromolecules, 2000, 33, 7116-7121.	2.2	21
148	Poly(5,6-dithiooctylisothianaphtene), a new low band gap polymer: spectroscopy and solar cell construction. Synthetic Metals, 2003, 138, 249-253.	2.1	21
149	Nanostructured organic pn junctions towards 3D photovoltaics. Applied Physics A: Materials Science and Processing, 2004, 79, 27-30.	1.1	21
150	High resolution electrical characterisation of organic photovoltaic blends. Microelectronic Engineering, 2007, 84, 431-436.	1.1	21
151	Development of novel processable electron accepting conjugated polymers containing fluoranthene units in the main chain. Polymer, 2009, 50, 5007-5015.	1.8	21
152	Exploring the Dithiocarbamate Precursor Route: Observation of a Base Induced Regioregularity Excess in Poly[(2-methoxy-5-(3′,7′-dimethyloctyloxy))-1,4-phenylenevinylene] (MDMOâ^PPV). Macromolecules, 2009, 42, 3661-3668.	2.2	21
153	CAFM on conjugated polymer nanofibers: Capable of assessing one fiber mobility. Organic Electronics, 2011, 12, 2084-2089.	1.4	21
154	Amphiphilic N-methylimidazole-functionalized diblock copolythiophenes. European Polymer Journal, 2014, 53, 206-214.	2.6	21
155	Diamond functionalization with light-harvesting molecular wires: improved surface coverage by optimized Suzuki cross-coupling conditions. RSC Advances, 2014, 4, 42044-42053.	1.7	21
156	Demonstration of methylene-ether bridge formation in melamine-formaldehyde resins. Journal of Polymer Science Part A, 1995, 33, 915-920.	2.5	20
157	State-to-state Scattering of Metastable CO Molecules from a LiF(100) Surface. Physical Review Letters, 1997, 78, 1375-1378.	2.9	20
158	Effect of oxygen on the electrical characteristics of PPV-LEDs. Optical Materials, 1998, 9, 134-137.	1.7	20
159	A deeper Insight into the Dithiocarbamate Precursor Route: Synthesis of Soluble Poly(thienylene) Tj ETQq1 1 0.78	84314 rgB⊺ 2.2	Г <u>/Q</u> verlock
160	Influence of octanedithiol on the nanomorphology of PCPDTBT:PCBM blends studied by solid-state NMR. Solar Energy Materials and Solar Cells, 2012, 96, 210-217.	3.0	20
161	Finding the optimal exchange–correlation functional to describe the excited state properties of push–pull organic dyes designed for thermally activated delayed fluorescence. Physical Chemistry Chemical Physics, 2020, 22, 16387-16399.	1.3	20
162	Nanocapsules with stimuli-responsive moieties for controlled release employing light and enzymatic triggers. Materials Chemistry Frontiers, 2020, 4, 2103-2112.	3.2	20

#	Article	IF	CITATIONS
163	Solid state cross polarization/magic angle spinning 13C NMR investigation of alkoxy-substituted poly(p-phenylene vinylene) homo- and copolymers. Synthetic Metals, 1992, 46, 23-44.	2.1	19
164	Imaging of the ageing on organic electroluminescent diodes, under different atmospheres by impedance spectroscopy, scanning electron microscopy and SIMS depth profiling analysis. Synthetic Metals, 1996, 83, 261-265.	2.1	18
165	The thermal conversion reaction of sulphonyl substituted poly(para-xylylene): evidence for the formation of PPV structures. Polymer, 2002, 43, 5749-5755.	1.8	18
166	Poly(p-phenylene vinylene) derivatives with ester- and carboxy-functionalized substituents: a versatile platform towards polar functionalized conjugated polymers. Polymer, 2005, 46, 5466-5475.	1.8	18
167	Impact of structure and homo-coupling of the central donor unit of small molecule organic semiconductors on solar cell performance. RSC Advances, 2016, 6, 32298-32307.	1.7	18
168	Lowâ€Dimensional Hybrid Perovskites Containing an Organic Cation with an Extended Conjugated System: Tuning the Excitonic Absorption Features. ChemNanoMat, 2019, 5, 323-327.	1.5	18
169	The elimination process of sulfinyl-precursor polymers towards poly(p-phenylene vinylene). Methods for monitoring elimination. Acta Polymerica, 1999, 50, 28-34.	1.4	17
170	Synthesis of electron-rich versus electron-poor poly?[1,4-phenylene]-[1-(n-alkylsulfinyl)ethylene]?s via the sulfinyl precursor route in different organic solvents. Polymer, 2000, 41, 7003-7009.	1.8	17
171	Isothermal crystallization of P3HT:PCBM blends studied by RHC. Journal of Thermal Analysis and Calorimetry, 2011, 105, 845-849.	2.0	17
172	Synthesis of well-defined PPV containing block polymers with precise endgroup control by a dual-initiator strategy. Polymer Chemistry, 2013, 4, 3471-3479.	1.9	17
173	On the Relation between Morphology and FET Mobility of Poly(3â€alkylthiophene)s at the Polymer/SiO ₂ and Polymer/Air Interface. Advanced Functional Materials, 2014, 24, 1994-2004.	7.8	17
174	Tuning the optical properties of poly(p-phenylene ethynylene) nanoparticles as bio-imaging probes by side chain functionalization. Journal of Colloid and Interface Science, 2017, 504, 527-537.	5.0	17
175	Effect of Branching on the Optical Properties of Poly(p-phenylene ethynylene) Conjugated Polymer Nanoparticles for Bioimaging. ACS Biomaterials Science and Engineering, 2019, 5, 1967-1977.	2.6	17
176	2D layered perovskite containing functionalised benzothieno-benzothiophene molecules: formation, degradation, optical properties and photoconductivity. Journal of Materials Chemistry C, 2020, 8, 7181-7188.	2.7	17
177	The synthesis of poly(4,4â€2-biphenylene vinylene) and poly(2,6-naphthalene vinylene) via a radical chain polymerisation. Polymer, 2000, 41, 2743-2753.	1.8	16
178	Novel Regiospecific MDMO-PPV Polymers with Improved Charge Transport Properties for Bulk Heterojunction Solar Cells. Synthetic Metals, 2005, 153, 81-84.	2.1	16
179	Versatile post-polymerization functionalization of poly(p-phenylene vinylene) copolymers containing carboxylic acid substituents: development of a universal method towards functional conjugated copolymers. Polymer Chemistry, 2010, 1, 1313.	1.9	16
180	Optical detection of deep electron traps in poly(<i>p</i> -phenylene vinylene) light-emitting diodes. Applied Physics Letters, 2011, 99, .	1.5	16

#	Article	IF	CITATIONS
181	Anionic PPV polymerization from the sulfinyl precursor route: Block copolymer formation from sequential addition of monomers. Polymer, 2013, 54, 1298-1304.	1.8	16
182	Improved Mechanistic Insights into Radical Sulfinyl Precursor MDMO-PPV Synthesis by Combining Microflow Technology and Computer Simulations. Macromolecules, 2015, 48, 8294-8306.	2.2	16
183	Low bandgap polymers based on bay-annulated indigo for organic photovoltaics: Enhanced sustainability in material design and solar cell fabrication. Organic Electronics, 2017, 50, 264-272.	1.4	16
184	Morphology-dependent pH-responsive release of hydrophilic payloads using biodegradable nanocarriers. RSC Advances, 2018, 8, 36869-36878.	1.7	16
185	Muconic acid esters as bio-based acrylate mimics. Polymer Chemistry, 2019, 10, 5555-5563.	1.9	16
186	Characterization by 13C CP/MAS n.m.r. spectroscopy of the structural changes in coals after chemical treatments. Fuel, 1991, 70, 811-817.	3.4	15
187	Synthesis of high molecular weight poly(4,4′-bisphenylene vinylene) and poly(2,6-naphthalene vinylene) via a non-ionic precursor route. Polymer, 1998, 39, 4171-4174.	1.8	15
188	Synthesis of aza-analogues of poly(isothianaphthene). Synthetic Metals, 1999, 99, 143-147.	2.1	15
189	Synthesis, ¹ H and ¹³ C NMR assignment and electrochemical properties of novel thiophene–thiazolothiazole oligomers and polymers. Magnetic Resonance in Chemistry, 2010, 48, 362-369.	1.1	15
190	Comparative Kinetic Monte Carlo study of the Sulfinyl and Dithiocarbamate Precursor Route toward Highly Regioregular MDMOâ€PPV. Macromolecular Theory and Simulations, 2013, 22, 246-255.	0.6	15
191	Electronic structure of positive and negative polarons in functionalized dithienylthiazolo[5,4-d]thiazoles: a combined EPR and DFT study. Physical Chemistry Chemical Physics, 2014, 16, 10032.	1.3	15
192	Quinoxaline-Based Cyclo(oligophenylenes). Journal of Organic Chemistry, 2015, 80, 2425-2430.	1.7	15
193	Physicochemical characterizations of functional hybrid liposomal nanocarriers formed using photo-sensitive lipids. Scientific Reports, 2017, 7, 46257.	1.6	15
194	The effect of anions on the solution behaviour of poly(xylylene tetrahydrothiophenium chloride) and on the elimination to poly(p-phenylene vinylene). Synthetic Metals, 1992, 52, 387-394.	2.1	14
195	New synthetic routes to poly(isothianaphthene). II. Mechanistic aspects of the reactions of phthalic anhydride and phthalide with phosphorus pentasulfide. Journal of Polymer Science Part A, 1996, 34, 1553-1560.	2.5	14
196	Morphological study of a poly(3,4-ethylenedioxythiophene)/polystyrenesulfonic acid mixture by solid state 13C-CP/MAS NMR relaxometry. Polymer, 2002, 43, 7003-7006.	1.8	14
197	Synthesis of a Processible High Molecular Weight Poly(thienylene vinylene). Polymerisation and Thin-Film Transistor Properties. Synthetic Metals, 2003, 135-136, 255-256.	2.1	14
198	2,5-Substituted PPV-Derivatives with Different Polarities: The Effect of Side Chain Polarity on Solubility, Optical and Electronic Properties. Macromolecular Chemistry and Physics, 2007, 208, 196-206.	1.1	14

#	Article	IF	CITATIONS
199	Cyclic voltammetry studies of n-type polymers with non-alternant fluoranthene units. Electrochimica Acta, 2009, 54, 1584-1588.	2.6	14
200	Controlled synthesis of MDMO-PPV and block copolymers made thereof. Polymer Chemistry, 2012, 3, 1722-1725.	1.9	14
201	Influence of the processing solvent on the photoactive layer nanomorphology of P3HT/PC ₆₀ BM solar cells. Journal of Polymer Science Part A, 2012, 50, 1037-1041.	2.5	14
202	Living Polymerization via Anionic Initiation for the Synthesis of Wellâ€Defined PPV Materials. Macromolecular Rapid Communications, 2012, 33, 242-247.	2.0	14
203	Synthesis of ester side chain functionalized all-conjugated diblock copolythiophenes via the Rieke method. Polymer Chemistry, 2014, 5, 1832.	1.9	14
204	Facile Synthesis of Well-Defined MDMO-PPV Containing (Tri)Block—Copolymers via Controlled Radical Polymerization and CuAAC Conjugation. Polymers, 2015, 7, 418-452.	2.0	14
205	Development and Optimization of Fast Quantitative Carbon-13 NMR Characterization Methods of Novolac Resins. Industrial & Engineering Chemistry Research, 1995, 34, 1364-1370.	1.8	13
206	Mechanistic study on the Gilch and the Sulfinyl polymerisation routes. Synthetic Metals, 2001, 119, 135-136.	2.1	13
207	Charge transfer in the weak driving force limit in blends of MDMO-PPV and dithienylthiazolo[5,4-d]thiazoles towards organic photovoltaics with high VOC. Physical Chemistry Chemical Physics, 2012, 14, 15774.	1.3	13
208	N-acyl-dithieno[3,2-b:2',3'-d]pyrrole-based low bandgap copolymers affording improved open-circuit voltages and efficiencies in polymer solar cells. Solar Energy Materials and Solar Cells, 2015, 136, 70-77.	3.0	13
209	Synthesis of poly(isothianaphthene) from 1,1,3,3-tetrachlorothiophthalan and tert-butylmercaptan: mechanism and quantitative analysis by solid state n.m.r Polymer, 1997, 38, 5221-5225.	1.8	12
210	Visualization of Tensile Stress Induced Material Response at a Crack Tip in Polymers under Critical Load by NMR Imaging. Macromolecules, 2000, 33, 4836-4841.	2.2	12
211	Scope and Limitations of a New Highly Selective Synthesis of Unsymmetrical Monomers for the Synthesis of Precursors toward Poly(arylenevinylene)s. Journal of Organic Chemistry, 2000, 65, 284-289.	1.7	12
212	Functionalized Dithienylthiazolo[5,4â€ <i>d</i>]thiazoles For Solutionâ€Processable Organic Fieldâ€Effect Transistors. ChemPlusChem, 2012, 77, 923-930.	1.3	12
213	Synthesis of Highly Fluorescent All-Conjugated Alternating Donor–Acceptor (Block) Copolymers via GRIM Polymerization. Macromolecules, 2016, 49, 6411-6419.	2.2	12
214	Designing Small Molecule Organic Solar Cells with High Open ircuit Voltage. ChemistrySelect, 2017, 2, 1253-1261.	0.7	12
215	Modification of poly(para-phenylene vinylene) by introduction of aromatic groups on the olefinic carbons. Synthetic Metals, 1992, 47, 111-132.	2.1	11
216	Improving selectivity by using a multipurpose cross polarization magic angle spinning NMR pulse sequence. Analytica Chimica Acta, 1993, 283, 1025-1031.	2.6	11

#	Article	IF	CITATIONS
217	A general synthetic route towards soluble poly(1,3-dithienylisothianaphthene) derivatives. Synthetic Metals, 1999, 101, 120-121.	2.1	11
218	Critical Analysis of Network Defects in Cross-Linked Isobutylene-Based Elastomers by NMR Imaging. Macromolecules, 1999, 32, 4692-4699.	2.2	11
219	New mechanistic aspects on the formation of poly(isothianaphthene) from P 4 S 10 and phthalic anhydride derivatives: carbon–carbon bond formation and cleavage via a cyclic reaction mechanism. Polymer, 2000, 41, 3121-3127.	1.8	11
220	Study of the thermal elimination process of sulphinyl-based PPV precursors by solid state NMR. Polymer, 2005, 46, 1759-1765.	1.8	11
221	Identification and Quantification of Defect Structures in Poly(2,5-thienylene vinylene) Derivatives Prepared via the Dithiocarbamate Precursor Route by Means of NMR Spectroscopy on ¹³ C-Labeled Polymers. Macromolecules, 2011, 44, 4711-4720.	2.2	11
222	An Efficient Acid-Induced Conversion of Dithiocarbamate Precursor Polymers into Conjugated Materials. Macromolecules, 2011, 44, 711-718.	2.2	11
223	Solidâ€state NMR as a tool to describe and quantify the morphology of photoactive layers used in plastic solar cells. Journal of Polymer Science Part A, 2011, 49, 1699-1707.	2.5	11
224	Charge photogeneration in donor/acceptor organic solar cells. Journal of Photonics for Energy, 2012, 2, 021001.	0.8	11
225	The Impact of Acceptor–Acceptor Homocoupling on the Optoelectronic Properties and Photovoltaic Performance of PDTSQx _{ff} Low Bandgap Polymers. Macromolecular Rapid Communications, 2018, 39, e1800086.	2.0	11
226	Benzo[1,2-b:4,5-b']dithiophene as a weak donor component for push-pull materials displaying thermally activated delayed fluorescence or room temperature phosphorescence. Dyes and Pigments, 2021, 186, 109022.	2.0	11
227	A 13C CP/MAS NMR investigation of poly(isothianaphthene). Synthetic Metals, 1991, 41, 513-517.	2.1	10
228	A highly efficient route towards well-defined modifications of poly(p-phenylene vinylene). Acta Polymerica, 1998, 49, 510-513.	1.4	10
229	Electrical field induced ageing of polymer light-emitting diodes in an oxygen-rich atmosphere studied by emission microscopy, scanning electron microscopy and secondary ion mass spectroscopy. Synthetic Metals, 1998, 96, 87-96.	2.1	10
230	Solid-State NMR Study of Different Types of Poly(vinyl formal). Macromolecules, 1999, 32, 440-447.	2.2	10
231	New synthetic routes to poly(isothianaphthene). Synthetic Metals, 2000, 110, 25-30.	2.1	10
232	H NMR Relaxation Study of the Gelation of Syndiotactic Poly(methyl methacrylate) in Toluene. Macromolecules, 2001, 34, 522-528.	2.2	10
233	Morphology of MDMO-PPV:PCBM bulk heterojunction organic solar cells studied by AFM, KFM, and TEM. , 2003, 4801, 40.		10
234	Investigating the role of efficiency enhancing interlayers for bulk heterojunction solar cells by scanning probe microscopy. Organic Electronics, 2014, 15, 1282-1289.	1.4	10

#	Article	IF	CITATIONS
235	Continuous Synthesis and Thermal Elimination of Sulfinylâ€Route Poly(<i>p</i> â€Phenylene Vinylene) in Consecutive Flow Reactions. Chemical Engineering and Technology, 2015, 38, 1749-1757.	0.9	10
236	All-polymer solar cells based on photostable bis(perylene diimide) acceptor polymers. Solar Energy Materials and Solar Cells, 2019, 196, 178-184.	3.0	10
237	The effect of halogenation on PBDTT-TQxT based non-fullerene polymer solar cells – Chlorination vs fluorination. Dyes and Pigments, 2020, 181, 108577.	2.0	10
238	Directing the Self-Assembly of Conjugated Organic Ammonium Cations in Low-Dimensional Perovskites by Halide Substitution. Chemistry of Materials, 2021, 33, 5177-5188.	3.2	10
239	H and 13C NMR Spectroscopy as a Tool To Probe the Microstructures of Different Types of Poly(vinyl) Tj ETQq1 1	0,784314 2.2	rgBT /Overl
240	Unexpected rearrangements in the synthesis of arylidene- or alkylidene-2-thiophthalides. Tetrahedron, 1996, 52, 11867-11878.	1.0	9
241	Intermolecular Order of Poly-(2,5-dimethyl- para-phenylene vinylene) and Poly-(para-phenylene) Tj ETQq1 1 0.784	1314 rgBT	Overlock 10
242	Study of the conversion process of sulfinyl-OC1C10–PPV precursor polymers with different analytical techniques. Thin Solid Films, 2002, 403-404, 120-125.	0.8	9
243	Temperature Dependence of the Reduction of Phthalic Thioanhydrides by NaBH4: Competition between 3-Hydroxythiolactone and Phthalide Formation. European Journal of Organic Chemistry, 2002, 2002, 1033-1036.	1.2	9
244	Study of the nanomorphology of OC1C10-PPV/precursor-PPV blends by solid state NMR relaxometry. Polymer, 2004, 45, 4499-4505.	1.8	9
245	Synthesis and Properties of Poly(p-fluoranthene vinylene):Â A Novel Conjugated Polymer with Nonalternant Repeating Units. Macromolecules, 2006, 39, 2438-2440.	2.2	9
246	<i>In situ</i> monitoring the thermal degradation of PCPDTBT low band gap polymers with varying alkyl side-chain patterns. Journal of Polymer Science Part A, 2013, 51, 4912-4922.	2.5	9
247	PPV Polymerization through the Gilch Route: Diradical Character of Monomers. Chemistry - A European Journal, 2015, 21, 19176-19185.	1.7	9
248	Bridge control of photophysical properties in benzothiazole-phenoxazine emitters – from thermally activated delayed fluorescence to room temperature phosphorescence. Journal of Materials Chemistry C, 2022, 10, 4775-4784.	2.7	9
249	Quasiâ€2D Hybrid Perovskite Formation Using Benzothieno[3,2â€ <i>b</i>]Benzothiophene (BTBT) Ammonium Cations: Substantial Cesium Lead(II) Iodide Black Phase Stabilization. Advanced Optical Materials, 2022, 10, .	3.6	9
250	A solid-state NMR investigation of the dopability of poly(p-phenylene vinylene) model compounds and corresponding polymers with iodine. Synthetic Metals, 1992, 48, 143-159.	2.1	8
251	Miscibility of poly(para-phenylene vinylene) model compounds with PMMA studied by solid-state NMR. Synthetic Metals, 1992, 47, 239-253.	2.1	8
252	Antistatic polymer layers based on poly(isothianaphthene) applied from aqueous compositions. Synthetic Metals, 1993, 57, 3702-3706.	2.1	8

#	Article	IF	CITATIONS
253	Theoretical investigation of nitrogen-containing polyisothianaphthene derivatives. Synthetic Metals, 1995, 69, 691-692.	2.1	8
254	Poly(tetrafluorobenzo[c]thiophene). Structure Analysis of Oligomers and Model Compound Based on 1D and 2D NMR Spectroscopy. Macromolecules, 1996, 29, 5981-5989.	2.2	8
255	A new precursor to electroconducting conjugated polymers: synthesis and opto-electrical properties of luminescent devices based on these PPV derivatives. Optical Materials, 1998, 9, 150-153.	1.7	8
256	Synthesis of PTV vis the dithiocarbamate route: a new precursor route toward conjugated polymers. , 2004, 5464, 52.		8
257	Fingerprints for Structural Defects in Poly(thienylene vinylene) (PTV): A Joint Theoretical–Experimental NMR Study on Model Molecules. Journal of Physical Chemistry B, 2011, 115, 12040-12050.	1.2	8
258	Solution-processed bi-layer polythiophene–fullerene organic solar cells. RSC Advances, 2013, 3, 25197.	1.7	8
259	Trivalent organophosphorus reagent induced pinacol rearrangement of 4H-cyclopenta[2,1-b:3,4-b′]dithiophen-4-one. Tetrahedron Letters, 2013, 54, 526-529.	0.7	8
260	Light-Induced Charge Transfer in Two-Dimensional Hybrid Lead Halide Perovskites. Journal of Physical Chemistry C, 2021, 125, 18317-18327.	1.5	8
261	Thermolysis of benzopyranone-indenone adducts: a new route to the C-nor-D-homo steroid skeleton. Journal of Organic Chemistry, 1983, 48, 2188-2193.	1.7	7
262	Semi-quantitative oxygen functional group distribution in two coal types. Fuel, 1992, 71, 553-557.	3.4	7
263	Solid-State NMR Study of the Multiphase Behavior of Linear and Cross-Linked Poly(1,3-dioxolane). Macromolecules, 1996, 29, 4000-4005.	2.2	7
264	Design and synthesis of side-chain functionalized regioregular poly(3-hexylthiophene)-based copolymers and application in polymer:fullerene bulk heterojunction solar cells. Proceedings of SPIE, 2009, , .	0.8	7
265	Synthetic Routes toward Asymmetrically Substituted (Functionalized) 4H-Cyclopenta[2,1-b:3,4-b′]dithiophenes. Synlett, 2013, 24, 2389-2392.	1.0	7
266	Study of optical and electrical properties of water-soluble conjugated poly(3-hexylthiophene) on different grain-sized mesoporous TiO2 layers. Thin Solid Films, 2014, 556, 285-290.	0.8	7
267	A PCPDTTPD-based narrow bandgap conjugated polyelectrolyte for organic solar cells. Polymer, 2018, 137, 303-311.	1.8	7
268	Difluorodithieno[3,2-a:2′,3′-c]phenazine as a strong acceptor for materials displaying thermally activated delayed fluorescence or room temperature phosphorescence. Dyes and Pigments, 2021, 190, 109301.	2.0	7
269	The synthesis and characterization of soluble poly(isothianaphthene)-derivatives. Synthetic Metals, 1997, 84, 415-416.	2.1	6
270	17α-Ethyl-5β-estrane-3α,17β-diol, a biological marker for the abuse of norethandrolone and ethylestrenol in slaughter cattle. Biomedical Applications, 1999, 728, 217-232.	1.7	6

#	Article	IF	CITATIONS
271	ESR spectroscopy of the elimination of sulfinyl precursor polymers towards PPV. Synthetic Metals, 1999, 102, 949-950.	2.1	6
272	Study of the elimination of precursor polymers towards conjugated materials. Synthetic Metals, 2001, 119, 311-312.	2.1	6
273	1H and13C NMR Full Assignment of a Series of Precursor Polymers Derived from the Sulfinyl Route Towards Poly(p-phenylene vinylene). Macromolecular Chemistry and Physics, 2001, 202, 343-353.	1.1	6
274	Density functional crystal orbital study of cyano-substituted poly(para-phenylene-vinylene) and poly(quinoxaline-vinylene). International Journal of Quantum Chemistry, 2006, 106, 1912-1923.	1.0	6
275	The synthesis of poly(thienylene vinylene) derivatives via the dithiocarbamate route: low band gap p-type conjugated polymers for photovoltaics. EPJ Applied Physics, 2007, 37, 237-240.	0.3	6
276	Evidence of the improvement of photovoltaic efficiency by polar molecule orientation in a new semiconducting polymer. Solar Energy Materials and Solar Cells, 2007, 91, 1816-1824.	3.0	6
277	Combined experimental–theoretical NMR study on 2,5â€bis(5â€arylâ€3â€hexylthiophenâ€2â€yl)â€thiazolo[5,4â€ <i>d</i>]thiazole derivatives for printable electro Magnetic Resonance in Chemistry, 2012, 50, 379-387.	nic s.1	6
278	Synthesis of PPV-b-PEG block copolymers via CuAAC conjugation. European Polymer Journal, 2014, 55, 114-122.	2.6	6
279	Influence of the amorphous phase and preceding solution processing on the eutectic behaviour in the state diagram of P3HT : PC ₆₁ BM determined by rapid heat–cool calorimetry. RSC Advar 2016, 6, 92981-92988.	ice \$,7	6
280	Modifiable poly(<i>p</i> -phenylene vinylene) copolymers towards functional conjugated materials. Polymer Chemistry, 2016, 7, 4771-4781.	1.9	6
281	Conjugated ionic (co)polythiophene-based cathode interlayers for bulk heterojunction organic solar cells. European Polymer Journal, 2017, 97, 49-56.	2.6	6
282	Fluorescent PCDTBT Nanoparticles with Tunable Size for Versatile Bioimaging. Materials, 2019, 12, 2497.	1.3	6
283	Full 1H and 13C NMR Chemical Shift Assignment of 1-Pyrenyl Substituted Oligosilanes as a Tool to Differentiate between Intramolecular "Through Space" and "Through Bond" Ground State Interactions. Journal of the American Chemical Society, 1994, 116, 7877-7884.	6.6	5
284	In vitro liver models are important tools to monitor the abuse of anabolic steroids in cattleâ€. Analyst, The, 1998, 123, 2453-2456.	1.7	5
285	Stability of PPV based light emitting diodes. Synthetic Metals, 1999, 102, 1097-1098.	2.1	5
286	Synthesis of blue light-emitting poly(p-arylene vinylene) derivative starting from new soluble polymeric precursors. Synthetic Metals, 2003, 139, 589-592.	2.1	5
287	State-of-the-art MDMO-PPV:PCBM bulk heterojunction organic solar cells: materials, nanomorphology, and electro-optical properties. , 2003, 4801, 15.		5
288	Low-level optical absorption phenomena in organic thin films for solar cell applications investigated by highly sensitive photocurrent and photothermal techniques. , 2004, , .		5

#	Article	IF	CITATIONS
289	Thermally induced order in PPV derivatives. Thin Solid Films, 2006, 511-512, 695-700.	0.8	5
290	An Efficient and Reliable Procedure for the Preparation of Highly Reactive Rieke Zinc. Advanced Synthesis and Catalysis, 2013, 355, 569-575.	2.1	5
291	Reaction of 4H-cyclopenta[2,1-b:3,4-bâ€2]dithiophenes with NBS—a route toward 2H-cyclopenta[2,1-b:3,4-bâ€2]dithiophene-2,6(4H)-diones. Tetrahedron, 2013, 69, 2260-2267.	1.0	5
292	Synthesis ofN,N'-dialkyl-6,6'-dibromoisoindigo derivatives by continuous flow. Journal of Flow Chemistry, 2015, 5, 201-209.	1.2	5
293	Synthesis of a multifunctional poly(p-phenylene ethynylene) scaffold with clickable azide-containing side chains for (bio)sensor applications. Polymer Chemistry, 2015, 6, 6720-6731.	1.9	5
294	13C NMR analysis of â€~Cava'-poly(isothianaphthene) oligomers. Synthetic Metals, 1992, 52, 395-400.	2.1	4
295	Study of the mechanism of the polymerisation of α-leaving group-α′-polariser-p-xylene Indications for a free radical mechanism. Synthetic Metals, 1997, 85, 1149-1150.	2.1	4
296	Characterization of poly(isothianaphthene) derivatives and analogs by using solid-state 13C NMR. Synthetic Metals, 1997, 89, 95-102.	2.1	4
297	Phase behaviour and solvent diffusion in the system poly(methyl methacrylate)/methanol. Macromolecular Chemistry and Physics, 2000, 201, 308-312.	1.1	4
298	Photoresist Characterization and Wet Strip after Low-k Dry Etch. Solid State Phenomena, 2007, 134, 325-328.	0.3	4
299	Poly(3-alkylthiophene) Nanofibers for Photovoltaic Energy Conversion. Advanced Materials Research, 0, 324, 32-37.	0.3	4
300	Synthesis of MDMOâ€₽PV Nanoparticles Via In Situ Sulfinyl Precursor Route Polymerization in Miniemulsion. Macromolecular Chemistry and Physics, 2013, 214, 1859-1864.	1.1	4
301	Analysis of bulk heterojunction organic solar cell blends by solid-state NMR relaxometry and sensitive external quantum efficiency – Impact of polymer side chain variation on nanoscale morphology. Organic Electronics, 2019, 74, 309-314.	1.4	4
302	Homocoupling defects in porphyrinoid small molecules and their effect on organic solar cell performance. Organic Electronics, 2019, 69, 48-55.	1.4	4
303	Study on the Dynamics of Phase Formation and Degradation of 2D Layered Hybrid Perovskites and Lowâ€dimensional Hybrids Containing Monoâ€functionalized Oligothiophene Cations. ChemNanoMat, 2021, 7, 1013-1019.	1.5	4
304	Dominant dimer emission provides colour stability for red thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2022, 10, 5840-5848.	2.7	4
305	Thermolysis of benzopyranone-indenone adducts. 2. Some new aspects of the mechanism. Journal of Organic Chemistry, 1986, 51, 1019-1025.	1.7	3
306	Structural assignment of conductive polymers by CP/MAS 13C-NMR. Synthetic Metals, 1991, 41, 305-308.	2.1	3

DIRK JM VANDERZANDE

#	Article	IF	CITATIONS
307	Smooth generation of 3H-2-benzopyran-3-ones and their Diels–Alder reactions with olefinic dienophiles. Journal of the Chemical Society Perkin Transactions 1, 1991, , 639-644.	0.9	3
308	Dynamic and structural parameters of coal and coal-derived products. Energy & Fuels, 1991, 5, 527-533.	2.5	3
309	Effect of iodine doping on the miscibility of poly(para-phenylene vinylene) model compounds mixed with PMMA using NMR solid-state techniques. Synthetic Metals, 1992, 53, 77-84.	2.1	3
310	Miscibility of poly(para-phenylene vinylene) model compounds with polycarbonate studied by solid-state NMR. Synthetic Metals, 1993, 59, 171-179.	2.1	3
311	The synthesis of methoxy substituted model compounds for structural analysis of poly(isothianaphthene)-derivatives. Synthetic Metals, 1995, 69, 569-570.	2.1	3
312	Poly(isothianaphthene) from 2,5-bis(trialkylsilyl)isothianaphthenes: preparation and spectroscopic characterization. Journal of Materials Chemistry, 1997, 7, 873-876.	6.7	3
313	Synthesis of methyl- and methoxy-substituted poly(p-phenylene vinylene) via a non-ionic precursor route. Synthetic Metals, 1997, 84, 399-400.	2.1	3
314	Polymer Leds Based on N-Alkylsulfinyl Ppv Precursor Polymers. Materials Research Society Symposia Proceedings, 1999, 558, 409.	0.1	3
315	Study of the synthesis and polymerisation behaviour of p-quinodimethane systems when electron poor monomers are used. Synthetic Metals, 2001, 119, 137-138.	2.1	3
316	Synthesis and complete NMR spectral assignment of thiophene-substituted sulfinyl monomers. Magnetic Resonance in Chemistry, 2004, 42, 931-937.	1.1	3
317	Isothermal Elimination ofn-Alkylsulfinyl OC1C10-PPV Precursor Polymers Studied with FT-IR, UVâ~'Vis, and MTDSC:Â Kinetics of the Elimination Reaction. Macromolecules, 2006, 39, 3194-3201.	2.2	3
318	Optical and EPR spectroscopy in pure and blended films of a novel low band gap polymer. EPJ Applied Physics, 2006, 36, 285-287.	0.3	3
319	Combined characterization techniques to understand the stability of a variety of organic photovoltaic devices: the ISOS-3 inter-laboratory collaboration. , 2012, , .		3
320	Ligand exchange and photoluminescence quenching in organic-inorganic blends poly(3-hexylthiophene) P3HT:PbS. Proceedings of SPIE, 2012, , .	0.8	3
321	13C CP/MAS n.m.r. study of changes in molecular mobility of a bituminous coal during desulphurization. Fuel, 1992, 71, 751-754.	3.4	2
322	Spectroscopic analysis of poly(tetrafluoroisothianaphthene) and aromatic model compounds Synthetic Metals, 1997, 84, 189-190.	2.1	2
323	Preparation of Poly(isothianaphthene) from 2,5-Bis(trialkylsilyl)isothianaphthenes. Synthetic Metals, 1997, 84, 413-414.	2.1	2
324	Chemical sensors based on a new low band gap material. Synthetic Metals, 1999, 102, 1332.	2.1	2

1

#	Article	IF	CITATIONS
325	Application of new PPV precursor polymers in organic LEDs. Synthetic Metals, 1999, 102, 997.	2.1	2
326	In-situ electrical and spectroscopical techniques for the study of degradation mechanisms and life time prediction of organic based electronic material systems. Materials Research Society Symposia Proceedings, 2003, 771, 1231.	0.1	2
327	Side chain effects on photoinduced absorption and photovoltaic performance of low bandgap thienylene vinylene and phenylene vinylene copolymers. EPJ Applied Physics, 2006, 36, 219-223.	0.3	2
328	Non-isothermal elimination process in the solid state of n-alkyl-sulphinyl precursor polymers towards conjugated poly[2-(3′,7′-dimethyloctyloxy)-5-methoxy-1,4-phenylene vinylene] studied with MTDSC and TGA. Polymer, 2006, 47, 7935-7942.	1.8	2
329	Elucidating the aspect of "phase separation" in organic blends by means of thermal analysis. , 2007, , .		2
330	Improvement of photovoltaic efficiency by polar molecule orientation in a newly developed semiconducting polymer. Thin Solid Films, 2008, 516, 8963-8968.	0.8	2
331	Synthesis and characterization of high molecular weight phthalocyanine-PPV copolymers through post-polymerization functionalization. Journal of Porphyrins and Phthalocyanines, 2011, 15, 659-666.	0.4	2
332	Stability and degradation of organic photovoltaics fabricated, aged, and characterized by the ISOS 3 inter-laboratory collaboration. , 2012, , .		2
333	Facile synthesis of 3-(ω-acetoxyalkyl)thiophenes and derived copolythiophenes using Rieke zinc. Reactive and Functional Polymers, 2014, 75, 22-30.	2.0	2
334	Electronic Structure of the Positive Radical of 13C-Labeled Poly(3-Octylthienylene Vinylene) Polymer. Applied Magnetic Resonance, 2014, 45, 827-839.	0.6	2
335	Improved efficiency of polymer-fullerene bulk heterojunction solar cells by the addition of Cu(II)-porphyrin-oligothiophene conjugates. Synthetic Metals, 2016, 218, 1-8.	2.1	2
336	"Formal―copolymers based on 1,3-dithienylisothianaphthene derivatives: Promising materials for electronic devices. , 1998, 49, 687.		2
337	Miscibility of doped and undoped poly(para-phenylene vinylene) model compounds with PMMA studied by cramps. Synthetic Metals, 1993, 57, 3576-3580.	2.1	1
338	1,3-Dithienylisothianaphthene derivatives as model compounds in the study of the electronic properties of poly(isothianaphthene) derivatives: an alternative synthesis. Synthetic Metals, 1995, 69, 555-556.	2.1	1
339	Investigation of Photoinduced Charge Transfer in Composites of a Novel Precursor PPV Polymer and Fullerenes. Materials Research Society Symposia Proceedings, 1999, 598, 207.	0.1	1
340	Current-voltage characteristics of polymer-fullerene solar cells. , 0, , .		1
341	Block-type architectures for Poly(p-Phenylene Vinylene) derivatives: a reality or an illusion?. , 2005, 5937, 116.		1

How stable are polymer:PCBM bulk heterojunction solar cells?. , 2006, , .

DIRK JM VANDERZANDE

#	Article	IF	CITATIONS
343	Light-emitting organic field-effect transistors using an organic heterostructure inside the transistor channel. , 2006, 6192, 71.		1
344	Low-bandgap poly(thienylene vinylene) for organic solar cells: photophysics and photovoltaic performance. , 2006, 6192, 309.		1
345	Tetra-alkoxy substituted PPV derivatives: a new class of highly soluble liquid crystalline conjugated polymers. Polymer Chemistry, 2011, 2, 1279.	1.9	1
346	Crystallization kinetics and morphology relations on thermally annealed bulk heterojunction solar cell blends studied by rapid heat cool calorimetry (RHC). , 2012, , .		1
347	Ionic high-performance light harvesting and carrier transporting OPV materials. , 2013, , .		1
348	Effect of Molecular Orientation on Photovoltaic Efficiency and Carrier Transport in a New Semiconducting Polymer. Acta Physica Polonica A, 2008, 113, 1009-1012.	0.2	1
349	Strategic Renewal from an Industry Perspective. Long Range Planning, 2001, 34, 259-261.	2.9	0
350	Organic Thin Film Transistor. Kobunshi, 2004, 53, 85-88.	0.0	0
351	TERRESTRIAL LASER-SCANNING PROVIDES MEANS FOR THE ANALYTICAL EVALUATION OF PLANTATION SYSTEMS. Acta Horticulturae, 2007, , 463-469.	0.1	0
352	Effect of the Controllable Molecular Ordering in a New Polymer on Carrier Transport and Photovoltaic Properties. Molecular Crystals and Liquid Crystals, 2008, 484, 362/[728]-372/[738].	0.4	0
353	The use of nanofibers of P3HT in bulk heterojunction solar cells: the effect of order and morphology on the performance of P3HT:PCBM blends. , 2009, , .		0
354	Introduction to the themed issue in honour of Prof. Kees Hummelen. Journal of Materials Chemistry C, 2021, 9, 16057-16058.	2.7	0