Artem Belousov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/675470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: a review and perspective. Catalysis Science and Technology, 2017, 7, 3659-3675.	2.1	133
2	Application of metal–organic frameworks as an alternative to metal oxide-based photocatalysts for the production of industrially important organic chemicals. Green Chemistry, 2021, 23, 6172-6204.	4.6	46
3	Improving methods of CaO transesterification activity. Journal of Molecular Catalysis A, 2014, 395, 225-233.	4.8	45
4	Recent advances in sustainable production and catalytic transformations of fatty acid methyl esters. Sustainable Energy and Fuels, 2021, 5, 4512-4545.	2.5	33
5	Metal–organic frameworkâ€based heterojunction photocatalysts for organic pollutant degradation: design, construction, and performances. Journal of Chemical Technology and Biotechnology, 2022, 97, 2675-2693.	1.6	23
6	A comparative study of the separation stage of rapeseed oil transesterification products obtained using various catalysts. Fuel Processing Technology, 2018, 173, 153-164.	3.7	22
7	Pyrochlore oxides as visible light-responsive photocatalysts. New Journal of Chemistry, 2021, 45, 22531-22558.	1.4	22
8	Mechanism Analysis and Kinetic Modelling of Cu NPs Catalysed Glycerol Conversion into Lactic Acid. Catalysts, 2019, 9, 231.	1.6	21
9	Liquid–liquid equilibrium in the systems FAMEs + vegetable oil + methyl alcohol and FAMEs + glycerol + methyl alcohol. Fuel, 2018, 217, 31-37.	3.4	20
10	Catalytic Conversion of Glycerol to Lactic Acid: State of the Art and Prospects. Kinetics and Catalysis, 2018, 59, 459-471.	0.3	20
11	The structure, properties and transesterification catalytic activities of the calcium glyceroxide. Chemical Engineering Journal, 2018, 339, 303-316.	6.6	19
12	Gas-phase dehydration of glycerol over commercial Pt/γ-Al2O3 catalysts. Chinese Journal of Chemical Engineering, 2015, 23, 1138-1146.	1.7	12
13	Solvent Effects in Epoxidation of Fatty Acid Methyl Esters with Hydrogen Peroxide over TS-1 Catalyst. Kinetics and Catalysis, 2019, 60, 62-68.	0.3	12
14	Deactivation of acid catalysts in vapor-phase dehydration of glycerol into acrolein. Russian Journal of Applied Chemistry, 2014, 87, 461-467.	0.1	8
15	Synthesis and Characterization of Bi2WxMo1â^'xO6 Solid Solutions and Their Application in Photocatalytic Desulfurization under Visible Light. Processes, 2022, 10, 789.	1.3	8
16	Tuning of Selectivity for Sustainable Production of Acrolein from Glycerol. ChemistrySelect, 2021, 6, 9191-9198.	0.7	7
17	Gas-Phase Dehydration of Glycerol into Acrolein in the Presence of Polyoxometalates. Kinetics and Catalysis, 2020, 61, 595-602.	0.3	6
18	Kinetics of vapor-phase dehydration of glycerol into acrolein on the BAO-1 heterogeneous catalyst. Catalysis in Industry, 2017, 9, 189-197.	0.3	2

#	Article	IF	CITATIONS
19	Modification of aluminum oxide as a method for controlling its activity and stability in vapor-phase dehydration of glycerol into acrolein. Russian Journal of Applied Chemistry, 2014, 87, 1279-1283.	0.1	0
20	A study of the preparation conditions of aluminum oxide on its catalytic activity and stability in vapor-phase dehydration of glycerol to acrolein. Russian Journal of Applied Chemistry, 2014, 87, 754-760.	0.1	0