Maxine Caws

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6754478/publications.pdf Version: 2024-02-01

	109321	110387
4,658	35	64
citations	h-index	g-index
112	112	4369
docs citations	times ranked	citing authors
	4,658 citations 112 docs citations	4,65835citationsh-index112112docs citations112times ranked

#	Article	IF	CITATIONS
1	The Influence of Host and Bacterial Genotype on the Development of Disseminated Disease with Mycobacterium tuberculosis. PLoS Pathogens, 2008, 4, e1000034.	4.7	410
2	Tuberculous meningitis. Nature Reviews Neurology, 2017, 13, 581-598.	10.1	337
3	Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nature Genetics, 2018, 50, 307-316.	21.4	271
4	Intensified Antituberculosis Therapy in Adults with Tuberculous Meningitis. New England Journal of Medicine, 2016, 374, 124-134.	27.0	231
5	Evaluation of GeneXpert MTB/RIF for Diagnosis of Tuberculous Meningitis. Journal of Clinical Microbiology, 2014, 52, 226-233.	3.9	181
6	Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nature Genetics, 2018, 50, 849-856.	21.4	167
7	Relationship between <i>Mycobacterium tuberculosis</i> Genotype and the Clinical Phenotype of Pulmonary and Meningeal Tuberculosis. Journal of Clinical Microbiology, 2008, 46, 1363-1368.	3.9	134
8	Global expansion of <i>Mycobacterium tuberculosis</i> lineage 4 shaped by colonial migration and local adaptation. Science Advances, 2018, 4, eaat5869.	10.3	130
9	Modern laboratory diagnosis of tuberculosis. Lancet Infectious Diseases, The, 2003, 3, 141-147.	9.1	127
10	Randomized Pharmacokinetic and Pharmacodynamic Comparison of Fluoroquinolones for Tuberculous Meningitis. Antimicrobial Agents and Chemotherapy, 2011, 55, 3244-3253.	3.2	114
11	The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis. Lancet Microbe, The, 2022, 3, e265-e273.	7.3	114
12	Mycobacterium tuberculosis Lineage Influences Innate Immune Response and Virulence and Is Associated with Distinct Cell Envelope Lipid Profiles. PLoS ONE, 2011, 6, e23870.	2.5	110
13	Evaluation of the MTBDRsl Test for Detection of Second-Line-Drug Resistance in <i>Mycobacterium tuberculosis</i> . Journal of Clinical Microbiology, 2010, 48, 2934-2939.	3.9	95
14	Comparison of Conventional Bacteriology with Nucleic Acid Amplification (Amplified Mycobacterium) Tj ETQq0 0 Chemotherapy. Journal of Clinical Microbiology, 2004, 42, 996-1002.	0 rgBT /O [.] 3.9	verlock 10 Tf 93
15	Leukotriene A4 Hydrolase Genotype and HIV Infection Influence Intracerebral Inflammation and Survival From Tuberculous Meningitis. Journal of Infectious Diseases, 2017, 215, 1020-1028.	4.0	93
16	Beijing Genotype of <i>Mycobacterium tuberculosis</i> Is Significantly Associated with High-Level Fluoroquinolone Resistance in Vietnam. Antimicrobial Agents and Chemotherapy, 2009, 53, 4835-4839.	3.2	85
17	Mutations Prevalent among Rifampin- and Isoniazid-Resistant Mycobacterium tuberculosis Isolates from a Hospital in Vietnam. Journal of Clinical Microbiology, 2006, 44, 2333-2337.	3.9	83
18	Clinical and Microbiological Features of HIV-Associated Tuberculous Meningitis in Vietnamese Adults. PLoS ONE, 2008, 3, e1772.	2.5	82

#	Article	IF	CITATIONS
19	Beijing Genotype of Mycobacterium tuberculosis Is Significantly Associated with Human Immunodeficiency Virus Infection and Multidrug Resistance in Cases of Tuberculous Meningitis. Journal of Clinical Microbiology, 2006, 44, 3934-3939.	3.9	75
20	Prognostic Models for 9-Month Mortality in Tuberculous Meningitis. Clinical Infectious Diseases, 2018, 66, 523-532.	5.8	65
21	Aetiologies of Central Nervous System Infection in Viet Nam: A Prospective Provincial Hospital-Based Descriptive Surveillance Study. PLoS ONE, 2012, 7, e37825.	2.5	64
22	Standardized methods for enhanced quality and comparability of tuberculous meningitis studies. Clinical Infectious Diseases, 2017, 64, ciw757.	5.8	61
23	Validation of the GenoType®MTBDRplus assay for diagnosis of multidrug resistant tuberculosis in South Vietnam. BMC Infectious Diseases, 2010, 10, 149.	2.9	55
24	Intensified treatment with high dose Rifampicin and Levofloxacin compared to standard treatment for adult patients with Tuberculous Meningitis (TBM-IT): protocol for a randomized controlled trial. Trials, 2011, 12, 25.	1.6	55
25	Evaluation of the MODS Culture Technique for the Diagnosis of Tuberculous Meningitis. PLoS ONE, 2007, 2, e1173.	2.5	51
26	Clinical Outcomes of Patients With Drug-Resistant Tuberculous Meningitis Treated With an Intensified Antituberculosis Regimen. Clinical Infectious Diseases, 2017, 65, 20-28.	5.8	49
27	Association of streptomycin resistance mutations with level of drug resistance and Mycobacterium tuberculosis genotypes. International Journal of Tuberculosis and Lung Disease, 2012, 16, 527-531.	1.2	48
28	Clinical presentations, diagnosis, mortality and prognostic markers of tuberculous meningitis in Vietnamese children: a prospective descriptive study. BMC Infectious Diseases, 2016, 16, 573.	2.9	46
29	Independent evaluation of 12 artificial intelligence solutions for the detection of tuberculosis. Scientific Reports, 2021, 11, 23895.	3.3	46
30	Influence of Antituberculosis Drug Resistance and Mycobacterium tuberculosis Lineage on Outcome in HIV-Associated Tuberculous Meningitis. Antimicrobial Agents and Chemotherapy, 2012, 56, 3074-3079.	3.2	44
31	Evaluation of Xpert MTB/RIF and MODS assay for the diagnosis of pediatric tuberculosis. BMC Infectious Diseases, 2013, 13, 31.	2.9	44
32	Tuberculosis in Adults and Children. SpringerBriefs in Public Health, 2015, , .	0.2	44
33	Molecular Techniques in the Diagnosis of Mycobacterium tuberculosis and the Detection of Drug Resistance. Annals of the New York Academy of Sciences, 2001, 953b, 138-145.	3.8	43
34	MARCO variants are associated with phagocytosis, pulmonary tuberculosis susceptibility and Beijing lineage. Genes and Immunity, 2016, 17, 419-425.	4.1	41
35	NaÃ ⁻ ve-pooled pharmacokinetic analysis of pyrazinamide, isoniazid and rifampicin in plasma and cerebrospinal fluid of Vietnamese children with tuberculous meningitis. BMC Infectious Diseases, 2016, 16, 144.	2.9	40
36	Rational Design, Synthesis, and Biological Evaluation of Heterocyclic Quinolones Targeting the Respiratory Chain of <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2017, 60, 3703-3726.	6.4	39

#	Article	IF	CITATIONS
37	The role of active case finding in reducing patient incurred catastrophic costs for tuberculosis in Nepal. Infectious Diseases of Poverty, 2019, 8, 99.	3.7	38
38	Mixed Tuberculosis Infections in Rural South Vietnam. Journal of Clinical Microbiology, 2012, 50, 1586-1592.	3.9	35
39	Fluoroquinolone resistance detection in Mycobacterium tuberculosis with locked nucleic acid probe real-time PCR. International Journal of Tuberculosis and Lung Disease, 2008, 12, 736-42.	1.2	34
40	Factors influencing active tuberculosis case-finding policy development and implementation: a scoping review. BMJ Open, 2019, 9, e031284.	1.9	33
41	Linezolid pharmacokinetics in MDR-TB: a systematic review, meta-analysis and Monte Carlo simulation. Journal of Antimicrobial Chemotherapy, 2018, 73, 1755-1762.	3.0	32
42	Microscopic Observation Drug Susceptibility Assay (MODS) for Early Diagnosis of Tuberculosis in Children. PLoS ONE, 2009, 4, e8341.	2.5	29
43	Prospective evaluation of GeneXpert for the diagnosis of HIV- negative pediatric TB cases. BMC Infectious Diseases, 2015, 15, 70.	2.9	28
44	TLR9 gene region polymorphisms and susceptibility to tuberculosis in Vietnam. Tuberculosis, 2015, 95, 190-196.	1.9	27
45	Tuberculosis in South Asia: a tide in the affairs of men. Multidisciplinary Respiratory Medicine, 2018, 13, 10.	1.5	27
46	Pretreatment Cerebrospinal Fluid Bacterial Load Correlates With Inflammatory Response and Predicts Neurological Events During Tuberculous Meningitis Treatment. Journal of Infectious Diseases, 2019, 219, 986-995.	4.0	26
47	Common Polymorphisms in the CD43 Gene Region Are Associated with Tuberculosis Disease and Mortality. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 342-348.	2.9	24
48	A comparative impact evaluation of two human resource models for community-based active tuberculosis case finding in Ho Chi Minh City, Viet Nam. BMC Public Health, 2020, 20, 934.	2.9	24
49	Isoniazid resistance, mycobacterial genotype and outcome in Vietnamese adults with tuberculous meningitis. International Journal of Tuberculosis and Lung Disease, 2002, 6, 865-71.	1.2	22
50	An Evaluation of Programmatic Community-Based Chest X-ray Screening for Tuberculosis in Ho Chi Minh City, Vietnam. Tropical Medicine and Infectious Disease, 2020, 5, 185.	2.3	21
51	Diagnosis of Pulmonary Tuberculosis in HIV-Positive Patients by Microscopic Observation Drug Susceptibility Assay. Journal of Clinical Microbiology, 2010, 48, 4573-4579.	3.9	19
52	Bacterial risk factors for treatment failure and relapse among patients with isoniazid resistant tuberculosis. BMC Infectious Diseases, 2018, 18, 112.	2.9	18
53	Sample size requirements for separating out the effects of combination treatments: Randomised controlled trials of combination therapy vs. standard treatment compared to factorial designs for patients with tuberculous meningitis. Trials, 2011, 12, 26.	1.6	17
54	Barriers and facilitators to accessing tuberculosis care in Nepal: a qualitative study to inform the design of a socioeconomic support intervention. BMJ Open, 2021, 11, e049900.	1.9	17

#	Article	IF	CITATIONS
55	Epiregulin (EREG) variation is associated with susceptibility to tuberculosis. Genes and Immunity, 2012, 13, 275-281.	4.1	16
56	The SIGLEC14 null allele is associated with Mycobacterium tuberculosis- and BCG-induced clinical and immunologic outcomes. Tuberculosis, 2017, 104, 38-45.	1.9	16
57	PCR-Restriction Fragment Length Polymorphism for Rapid, Low-Cost Identification of Isoniazid-Resistant Mycobacterium tuberculosis. Journal of Clinical Microbiology, 2007, 45, 1789-1793.	3.9	15
58	Evaluation of microscopic observation drug susceptibility assay for diagnosis of multidrug-resistant Tuberculosis in Viet Nam. BMC Infectious Diseases, 2012, 12, 49.	2.9	14
59	The Application of GeneXpert MTB/RIF for Smear-Negative TB Diagnosis as a Fee-Paying Service at a South Asian General Hospital. Tuberculosis Research and Treatment, 2015, 2015, 1-6.	0.6	14
60	Dynamic Prediction of Death in Patients With Tuberculous Meningitis Using Time-updated Glasgow Coma Scale and Plasma Sodium Measurements. Clinical Infectious Diseases, 2019, 70, 827-834.	5.8	14
61	â€~Power plays plus push': experts' insights into the development and implementation of active tuberculosis case-finding policies globally, a qualitative study. BMJ Open, 2020, 10, e036285.	1.9	13
62	Enhanced Private Sector Engagement for Tuberculosis Diagnosis and Reporting through an Intermediary Agency in Ho Chi Minh City, Viet Nam. Tropical Medicine and Infectious Disease, 2020, 5, 143.	2.3	13
63	Sources of Multidrug Resistance in Patients With Previous Isoniazid-Resistant Tuberculosis Identified Using Whole Genome Sequencing: A Longitudinal Cohort Study. Clinical Infectious Diseases, 2020, 71, e532-e539.	5.8	13
64	Tuberculosis among economic migrants: a cross-sectional study of the risk of poor treatment outcomes and impact of a treatment adherence intervention among temporary residents in an urban district in Ho Chi Minh City, Viet Nam. BMC Infectious Diseases, 2020, 20, 134.	2.9	13
65	How to reduce household costs for people with tuberculosis: a longitudinal costing survey in Nepal. Health Policy and Planning, 2021, 36, 594-605.	2.7	13
66	Molecular analysis of Mycobacterium tuberculosis causing multidrug-resistant tuberculosis meningitis. International Journal of Tuberculosis and Lung Disease, 2007, 11, 202-8.	1.2	13
67	Socio-protective effects of active case finding on catastrophic costs from tuberculosis in Ho Chi Minh City, Viet Nam: a longitudinal patient cost survey. BMC Health Services Research, 2021, 21, 1051.	2.2	12
68	Diagnostic Accuracy of Microscopic Observation Drug Susceptibility (MODS) Assay for Pediatric Tuberculosis in Hanoi, Vietnam. PLoS ONE, 2013, 8, e72100.	2.5	11
69	Scale-up of diagnostics for multidrug resistant tuberculosis. Lancet Infectious Diseases, The, 2010, 10, 656-658.	9.1	10
70	Evaluating the yield of systematic screening for tuberculosis among three priority groups in Ho Chi Minh City, Viet Nam. Infectious Diseases of Poverty, 2020, 9, 166.	3.7	10
71	Comparison of MAS-PCR and GenoType MTBDR assay for the detection of rifampicin-resistant Mycobacterium tuberculosis. International Journal of Tuberculosis and Lung Disease, 2008, 12, 1306-12.	1.2	10
72	Active case-finding policy development, implementation and scale-up in high-burden countries: A mixed-methods survey with National Tuberculosis Programme managers and document review. PLoS ONE, 2020, 15, e0240696.	2.5	9

#	Article	IF	CITATIONS
73	Capitalizing on facilitators and addressing barriers when implementing active tuberculosis case-finding in six districts of Ho Chi Minh City, Vietnam: a qualitative study with key stakeholders. Implementation Science, 2021, 16, 54.	6.9	8
74	Multiplex allele-specific polymerase chain reaction for detection of isoniazid resistance in <i>Mycobacterium tuberculosis</i> . International Journal of Tuberculosis and Lung Disease, 2011, 15, 799-803.	1.2	7
75	Comparative Yield of Tuberculosis during Active Case Finding Using GeneXpert or Smear Microscopy for Diagnostic Testing in Nepal: A Cross-Sectional Study. Tropical Medicine and Infectious Disease, 2021, 6, 50.	2.3	7
76	Research protocol for a mixed-methods study to characterise and address the socioeconomic impact of accessing TB diagnosis and care in Nepal. Wellcome Open Research, 2020, 5, 19.	1.8	7
77	REL and BHLHE40 Variants Are Associated with IL-12 and IL-10 Responses and Tuberculosis Risk. Journal of Immunology, 2022, 208, 1352-1361.	0.8	6
78	â€~A double-edged sword': Perceived benefits and harms of active case-finding for people with presumptive tuberculosis and communities—A qualitative study based on expert interviews. PLoS ONE, 2021, 16, e0247568.	2.5	5
79	Building on facilitators and overcoming barriers to implement active tuberculosis case-finding in Nepal, experiences of community health workers and people with tuberculosis. BMC Health Services Research, 2021, 21, 295.	2.2	5
80	Evaluation of the efficacy of two methods for direct extraction of DNA from Mycobacterium tuberculosis sputum. Journal of Infection in Developing Countries, 2018, 12, 1067-1072.	1.2	4
81	Characterization of DNA methylation in Malawian <i>Mycobacterium tuberculosis</i> clinical isolates. PeerJ, 2020, 8, e10432.	2.0	4
82	Clinical Manifestations. SpringerBriefs in Public Health, 2015, , 17-26.	0.2	3
83	Genetic diversity of Mycobacterium tuberculosis clinical isolates in Blantyre, Malawi. Heliyon, 2019, 5, e02638.	3.2	3
84	Tuberculosis in Staff and Students of Patan Hospital. Journal of Nepal Health Research Council, 2018, 15, 268-274.	0.8	3
85	Feasibility of HPV self-sampling pathway in Kathmandu Valley, Nepal using a human-centred design approach. Sexual and Reproductive Health Matters, 2022, 29, 2005283.	1.8	3
86	Research protocol for a mixed-methods study to characterise and address the socioeconomic impact of accessing TB diagnosis and care in Nepal. Wellcome Open Research, 2020, 5, 19.	1.8	2
87	The impact of active case finding on transmission dynamics of tuberculosis: A modelling study. PLoS ONE, 2021, 16, e0257242.	2.5	2
88	Could omics unlock the secret of surviving tuberculous meningitis?. Lancet Infectious Diseases, The, 2018, 18, 479-480.	9.1	1
89	Xpert Ultra and TB meningitis: advancing towards policy revision?. Annals of Infection, 2018, 2, 6-6.	0.0	0
90	Mycobacterial Blood Culture for Diagnosis of Tuberculosis in Vietnamese Children. Pediatric Infectious Disease Journal, 2019, 38, e309-e312.	2.0	0

#	Article	IF	CITATIONS
91	Title is missing!. , 2020, 15, e0240696.		Ο
92	Title is missing!. , 2020, 15, e0240696.		0
93	Title is missing!. , 2020, 15, e0240696.		0
94	Title is missing!. , 2020, 15, e0240696.		0
95	Title is missing!. , 2020, 15, e0240696.		0
96	Title is missing!. , 2020, 15, e0240696.		0
97	Protocol for the Addressing the Social Determinants and Consequences of Tuberculosis in Nepal (ASCOT) pilot trial. Wellcome Open Research, 0, 7, 141.	1.8	0