## Letian Dou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/675420/publications.pdf Version: 2024-02-01



Ι έτιλη Ποιι

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications, 2013, 4, 1446.                                                                                                                              | 5.8  | 2,612     |
| 2  | Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014, 5, 5404.                                                                                                                       | 5.8  | 2,214     |
| 3  | Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics, 2012, 6, 180-185.                                                                                                                     | 15.6 | 1,374     |
| 4  | Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance<br>Solar Cells. Nano Letters, 2014, 14, 4158-4163.                                                                                     | 4.5  | 1,343     |
| 5  | Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349, 1518-1521.                                                                                                                                   | 6.0  | 1,159     |
| 6  | 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research. Advanced Materials, 2013, 25, 6642-6671.                                                                                                                | 11.1 | 1,055     |
| 7  | Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. Chemical Reviews, 2015, 115, 12633-12665.                                                                                                                   | 23.0 | 1,029     |
| 8  | Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. Journal of the American<br>Chemical Society, 2015, 137, 9230-9233.                                                                                                | 6.6  | 861       |
| 9  | Lasing in robust cesium lead halide perovskite nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1993-1998.                                                                       | 3.3  | 668       |
| 10 | Thermochromic halide perovskite solar cells. Nature Materials, 2018, 17, 261-267.                                                                                                                                                      | 13.3 | 630       |
| 11 | Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency.<br>Scientific Reports, 2013, 3, 3356.                                                                                                     | 1.6  | 542       |
| 12 | Systematic Investigation of Benzodithiophene- and Diketopyrrolopyrrole-Based Low-Bandgap Polymers<br>Designed for Single Junction and Tandem Polymer Solar Cells. Journal of the American Chemical<br>Society, 2012, 134, 10071-10079. | 6.6  | 530       |
| 13 | Visibly Transparent Polymer Solar Cells Produced by Solution Processing. ACS Nano, 2012, 6, 7185-7190.                                                                                                                                 | 7.3  | 492       |
| 14 | High-performance multiple-donor bulk heterojunction solar cells. Nature Photonics, 2015, 9, 190-198.                                                                                                                                   | 15.6 | 489       |
| 15 | A Selenium‣ubstituted Lowâ€Bandgap Polymer with Versatile Photovoltaic Applications. Advanced<br>Materials, 2013, 25, 825-831.                                                                                                         | 11.1 | 396       |
| 16 | Growth and Anion Exchange Conversion of CH <sub>3</sub> NH <sub>3</sub> PbX <sub>3</sub> Nanorod Arrays for Light-Emitting Diodes. Nano Letters, 2015, 15, 5519-5524.                                                                  | 4.5  | 342       |
| 17 | Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews, 2018, 47, 6046-6072.                                                                                                                   | 18.7 | 339       |
| 18 | Metal Oxide Nanoparticles as an Electronâ€Transport Layer in Highâ€Performance and Stable Inverted<br>Polymer Solar Cells. Advanced Materials, 2012, 24, 5267-5272.                                                                    | 11.1 | 333       |

LETIAN DOU

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nature Chemistry,<br>2019, 11, 1151-1157.                                                                                  | 6.6  | 302       |
| 20 | Synthesis of 5 <i>H</i> -Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i> ]pyran as an Electron-Rich Building Block for<br>Donor–Acceptor Type Low-Bandgap Polymers. Macromolecules, 2013, 46, 3384-3390.        | 2.2  | 299       |
| 21 | Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature, 2020, 580, 614-620.                                                                                                       | 13.7 | 284       |
| 22 | Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nature<br>Reviews Materials, 2017, 2, .                                                                      | 23.3 | 279       |
| 23 | Recent trends in polymer tandem solar cells research. Progress in Polymer Science, 2013, 38, 1909-1928.                                                                                                 | 11.8 | 246       |
| 24 | A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar<br>cells. Journal of Materials Chemistry A, 2015, 3, 11940-11947.                                    | 5.2  | 213       |
| 25 | Highly Stable Lead-Free Perovskite Field-Effect Transistors Incorporating Linear π-Conjugated Organic<br>Ligands. Journal of the American Chemical Society, 2019, 141, 15577-15585.                     | 6.6  | 180       |
| 26 | Synthesis of Ultrathin Copper Nanowires Using Tris(trimethylsilyl)silane for High-Performance and<br>Low-Haze Transparent Conductors. Nano Letters, 2015, 15, 7610-7615.                                | 4.5  | 179       |
| 27 | Spatially resolved multicolor CsPbX <sub>3</sub> nanowire heterojunctions via anion exchange.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7216-7221. | 3.3  | 178       |
| 28 | High-performance semi-transparent polymer solar cells possessing tandem structures. Energy and Environmental Science, 2013, 6, 2714.                                                                    | 15.6 | 170       |
| 29 | Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites. Nature<br>Communications, 2020, 11, 664.                                                                      | 5.8  | 167       |
| 30 | Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors.<br>ACS Nano, 2016, 10, 2600-2606.                                                                          | 7.3  | 155       |
| 31 | Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. Proceedings of the<br>National Academy of Sciences of the United States of America, 2018, 115, 11929-11934.    | 3.3  | 153       |
| 32 | Active Layer-Incorporated, Spectrally Tuned Au/SiO <sub>2</sub> Core/Shell Nanorod-Based Light<br>Trapping for Organic Photovoltaics. ACS Nano, 2013, 7, 3815-3822.                                     | 7.3  | 134       |
| 33 | Single-Crystal Linear Polymers Through Visible Light–Triggered Topochemical Quantitative<br>Polymerization. Science, 2014, 343, 272-277.                                                                | 6.0  | 134       |
| 34 | Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano<br>Research, 2017, 10, 1107-1114.                                                                 | 5.8  | 128       |
| 35 | Atomic Resolution Imaging of Halide Perovskites. Nano Letters, 2016, 16, 7530-7535.                                                                                                                     | 4.5  | 125       |
| 36 | Ultrathin Epitaxial Cu@Au Core–Shell Nanowires for Stable Transparent Conductors. Journal of the<br>American Chemical Society, 2017, 139, 7348-7354.                                                    | 6.6  | 125       |

LETIAN DOU

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Nearâ€Infrared Materials: The Turning Point of Organic Photovoltaics. Advanced Materials, 2022, 34, e2107330.                                                                                                                       | 11.1 | 111       |
| 38 | Multifunctional Conjugated Ligand Engineering for Stable and Efficient Perovskite Solar Cells.<br>Advanced Materials, 2021, 33, e2100791.                                                                                           | 11.1 | 99        |
| 39 | Solutionâ€Processed Small Molecules Using Different Electron Linkers for Highâ€Performance Solar<br>Cells. Advanced Materials, 2013, 25, 4657-4662.                                                                                 | 11.1 | 96        |
| 40 | Layer-by-layer anionic diffusion in two-dimensional halide perovskite vertical heterostructures.<br>Nature Nanotechnology, 2021, 16, 584-591.                                                                                       | 15.6 | 88        |
| 41 | Sideâ€Chain Tunability via Triple Component Random Copolymerization for Better Photovoltaic<br>Polymers. Advanced Energy Materials, 2014, 4, 1300864.                                                                               | 10.2 | 81        |
| 42 | Extrinsic and Dynamic Edge States of Two-Dimensional Lead Halide Perovskites. ACS Nano, 2019, 13,<br>1635-1644.                                                                                                                     | 7.3  | 79        |
| 43 | Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of<br>CH <sub>3</sub> NH <sub>3</sub> Pbl <sub>3</sub> Perovskite as a Possible Cooling Bottleneck. Journal<br>of Physical Chemistry Letters, 2017, 8, 3211-3215. | 2.1  | 73        |
| 44 | Lead-Free Organic–Perovskite Hybrid Quantum Wells for Highly Stable Light-Emitting Diodes. ACS<br>Nano, 2021, 15, 6316-6325.                                                                                                        | 7.3  | 73        |
| 45 | Emerging two-dimensional halide perovskite nanomaterials. Journal of Materials Chemistry C, 2017, 5, 11165-11173.                                                                                                                   | 2.7  | 67        |
| 46 | A Selenophene Containing Benzodithiophene- <i>alt</i> -thienothiophene Polymer for Additive-Free<br>High Performance Solar Cell. Macromolecules, 2015, 48, 562-568.                                                                 | 2.2  | 59        |
| 47 | Ligand-Driven Grain Engineering of High Mobility Two-Dimensional Perovskite Thin-Film Transistors.<br>Journal of the American Chemical Society, 2021, 143, 15215-15223.                                                             | 6.6  | 55        |
| 48 | Elucidating Double Aggregation Mechanisms in the Morphology Optimization of<br>Diketopyrrolopyrroleâ€Based Narrow Bandgap Polymer Solar Cells. Advanced Materials, 2014, 26,<br>3142-3147.                                          | 11.1 | 52        |
| 49 | Electrical and Optical Tunability in All-Inorganic Halide Perovskite Alloy Nanowires. Nano Letters, 2018, 18, 3538-3542.                                                                                                            | 4.5  | 51        |
| 50 | Two-dimensional halide perovskites featuring semiconducting organic building blocks. Materials<br>Chemistry Frontiers, 2020, 4, 3400-3418.                                                                                          | 3.2  | 50        |
| 51 | Highly Efficient Halide Perovskite Lightâ€Emitting Diodes via Molecular Passivation. Angewandte Chemie<br>- International Edition, 2021, 60, 8337-8343.                                                                             | 7.2  | 47        |
| 52 | Additive manufacturing of patterned 2D semiconductor through recyclable masked growth.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3437-3442.                                    | 3.3  | 46        |
| 53 | <scp>Twoâ€dimensional</scp> halide perovskite <scp>quantumâ€well</scp> emitters: A critical review.<br>EcoMat, 2021, 3, e12104.                                                                                                     | 6.8  | 45        |
| 54 | Improving Structural Order for a Highâ€Performance Diketopyrrolopyrroleâ€Based Polymer Solar Cell<br>with a Thick Active Layer. Advanced Energy Materials, 2014, 4, 1300739.                                                        | 10.2 | 43        |

Letian Dou

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Designing artificial two-dimensional landscapes via atomic-layer substitution. Proceedings of the<br>National Academy of Sciences of the United States of America, 2021, 118, .                        | 3.3  | 43        |
| 56 | Benzoin Radicals as Reducing Agent for Synthesizing Ultrathin Copper Nanowires. Journal of the American Chemical Society, 2017, 139, 3027-3032.                                                        | 6.6  | 40        |
| 57 | Electronic and Spintronic Open-Shell Macromolecules, <i>Quo Vadis</i> ?. Journal of the American<br>Chemical Society, 2022, 144, 626-647.                                                              | 6.6  | 38        |
| 58 | High performance low band gap polymer solar cells with a non-conventional acceptor. Chemical Communications, 2012, 48, 7616.                                                                           | 2.2  | 33        |
| 59 | Novel fullerene acceptors: synthesis and application in low band gap polymer solar cells. Journal of<br>Materials Chemistry, 2012, 22, 13391.                                                          | 6.7  | 31        |
| 60 | Quantifying Anionic Diffusion in 2D Halide Perovskite Lateral Heterostructures. Advanced Materials, 2021, 33, .                                                                                        | 11.1 | 31        |
| 61 | Mechanically robust and self-healable perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100320.                                                                                          | 2.8  | 29        |
| 62 | Long-lived charge separation in two-dimensional ligand-perovskite heterostructures. Journal of<br>Chemical Physics, 2020, 152, 044711.                                                                 | 1.2  | 28        |
| 63 | Thermoelectric Performance of Lead-Free Two-Dimensional Halide Perovskites Featuring Conjugated<br>Ligands. Nano Letters, 2021, 21, 7839-7844.                                                         | 4.5  | 28        |
| 64 | Synthesis and characterization of a novel kind of near-infrared electrochromic polymers containing<br>an anthraquinone imide group and ionic moieties. Journal of Materials Chemistry, 2009, 19, 8470. | 6.7  | 27        |
| 65 | Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly.<br>Nano Research, 2020, 13, 1453-1458.                                                                 | 5.8  | 26        |
| 66 | Soft-lock drawing of super-aligned carbon nanotube bundles for nanometre electrical contacts.<br>Nature Nanotechnology, 2022, 17, 278-284.                                                             | 15.6 | 24        |
| 67 | Halide Perovskite Epitaxial Heterostructures. Accounts of Materials Research, 2020, 1, 213-224.                                                                                                        | 5.9  | 20        |
| 68 | Degradation and Self-Healing in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 24073-24088.                                                                                     | 4.0  | 20        |
| 69 | Synthesis of 5 <i>H</i> -Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i> ]pyran as an Electron-Rich Building Block for<br>Donor–Acceptor Type Low-Bandgap Polymers. Macromolecules, 2013, 46, 4734-4734.       | 2.2  | 17        |
| 70 | Organic semiconductor-incorporated two-dimensional halide perovskites. National Science Review, 2022, 9, nwab111.                                                                                      | 4.6  | 15        |
| 71 | Formation of liquid phase and nanostructures in flash sintered ZnO. Scripta Materialia, 2021, 195, 113719.                                                                                             | 2.6  | 13        |
| 72 | A Leap towards High-Performance 2D Perovskite Photodetectors. Trends in Chemistry, 2019, 1, 365-367.                                                                                                   | 4.4  | 12        |

LETIAN DOU

| #  | Article                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Large‣cale Plasmonic Hybrid Framework with Builtâ€In Nanohole Array as Multifunctional Optical<br>Sensing Platforms. Small, 2020, 16, 1906459. | 5.2  | 11        |
| 74 | Colloidal nanocrystals for large-area LEDs. Nature Nanotechnology, 2022, 17, 562-563.                                                          | 15.6 | 11        |
| 75 | Highly Efficient Halide Perovskite Lightâ€Emitting Diodes via Molecular Passivation. Angewandte Chemie, 2021, 133, 8418-8424.                  | 1.6  | 9         |
| 76 | Two-Dimensional Organic Semiconductor-Incorporated Perovskite (OSiP) Electronics. ACS Applied Electronic Materials, 2021, 3, 5155-5164.        | 2.0  | 9         |
| 77 | Tailoring Anchoring Groups in Lowâ€Dimensional Organic Semiconductorâ€Incorporated Perovskites.<br>Small Structures, 2022, 3, .                | 6.9  | 9         |
| 78 | Tandem Solar Cell—Concept and Practice in Organic Solar Cells. Topics in Applied Physics, 2015, ,<br>315-346.                                  | 0.4  | 8         |
| 79 | Organic Cation Engineering for Vertical Charge Transport in Leadâ€Free Perovskite Quantum Wells.<br>Small Science, 2021, 1, 2000024.           | 5.8  | 8         |
| 80 | Field-assisted growth of one-dimensional ZnO nanostructures with high defect density.<br>Nanotechnology, 2021, 32, 095603.                     | 1.3  | 8         |
| 81 | A selenophene-containing conjugated organic ligand for two-dimensional halide perovskites.<br>Chemical Communications, 2021, 57, 11469-11472.  | 2.2  | 7         |
| 82 | Anion diffusion in two-dimensional halide perovskites. APL Materials, 2022, 10, .                                                              | 2.2  | 7         |
| 83 | Plastic solar cells: breaking the 10% commercialization barrier. Proceedings of SPIE, 2012, , .                                                | 0.8  | 5         |
| 84 | Structural Damage of Two-Dimensional Organic–Inorganic Halide Perovskites. Inorganics, 2020, 8, 13.                                            | 1.2  | 5         |
| 85 | Structural Tunability and Diversity of Twoâ€Dimensional Lead Halide Benzenethiolate. Chemistry - A<br>European Journal, 2020, 26, 6599-6607.   | 1.7  | 3         |
| 86 | 4D-STEM Characterization of Molecular Ordering in Organic Semiconductors. Microscopy and Microanalysis, 2019, 25, 1752-1753.                   | 0.2  | 0         |
| 87 | Understanding phase transition dynamics paves the way to halide perovskites nanoelectronics. MRS Bulletin, 2021, 46, 317-318.                  | 1.7  | 0         |
| 88 | Understanding phase transition dynamics paves the way to halide perovskites nanoelectronics. MRS Bulletin, 0, , 1-2.                           | 1.7  | 0         |
| 89 | Halide Perovskites for Photonics and Optoelectronics: introduction to special issue. Optical Materials Express, 2022, 12, 1764.                | 1.6  | 0         |