Rudolph L Juliano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6753656/publications.pdf Version: 2024-02-01

Ρυσοιρμάι Ιυμλησ

#	Article	IF	CITATIONS
1	The delivery of therapeutic oligonucleotides. Nucleic Acids Research, 2016, 44, 6518-6548.	14.5	656
2	Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Research, 2008, 36, 4158-4171.	14.5	402
3	Biological Barriers to Therapy with Antisense and siRNA Oligonucleotides. Molecular Pharmaceutics, 2009, 6, 686-695.	4.6	252
4	Tat-Conjugated PAMAM Dendrimers as Delivery Agents for Antisense and siRNA Oligonucleotides. Pharmaceutical Research, 2005, 22, 2099-2106.	3.5	203
5	Integrins and GTPases in tumour cell growth, motility and invasion. Trends in Cell Biology, 1998, 8, 101-106.	7.9	201
6	Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase. Nature Cell Biology, 2000, 2, 593-600.	10.3	192
7	Antisense inhibition of P-glycoprotein expression using peptide–oligonucleotide conjugates. Biochemical Pharmacology, 2000, 60, 83-90.	4.4	176
8	Cellular Uptake and Intracellular Trafficking of Antisense and siRNA Oligonucleotides. Bioconjugate Chemistry, 2012, 23, 147-157.	3.6	167
9	Cooperation between soluble factors and integrin-mediated cell anchorage in the control of cell growth and differentiation. BioEssays, 1996, 18, 911-917.	2.5	122
10	Targeted Intracellular Delivery of Antisense Oligonucleotides via Conjugation with Small-Molecule Ligands. Journal of the American Chemical Society, 2010, 132, 8848-8849.	13.7	111
11	The Chemistry and Biology of Oligonucleotide Conjugates. Accounts of Chemical Research, 2012, 45, 1067-1076.	15.6	107
12	Intracellular delivery of an antisense oligonucleotide via endocytosis of a G protein-coupled receptor. Nucleic Acids Research, 2010, 38, 6567-6576.	14.5	80
13	Nanomedicine: is the wave cresting?. Nature Reviews Drug Discovery, 2013, 12, 171-172.	46.4	79
14	Inhibition of MDR1 expression with altritol-modified siRNAs. Nucleic Acids Research, 2007, 35, 1064-1074.	14.5	73
15	High-throughput screening identifies small molecules that enhance the pharmacological effects of oligonucleotides. Nucleic Acids Research, 2015, 43, 1987-1996.	14.5	73
16	Receptors, endocytosis, and trafficking: the biological basis of targeted delivery of antisense and siRNA oligonucleotides. Journal of Drug Targeting, 2013, 21, 27-43.	4.4	69
17	Cellâ€targeting and cellâ€penetrating peptides for delivery of therapeutic and imaging agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 324-335.	6.1	66
18	Multicellular Tumor Spheroids as a Model for Assessing Delivery of Oligonucleotides in Three Dimensions. Molecular Therapy - Nucleic Acids, 2014, 3, e153.	5.1	64

RudolphÂL Juliano

#	Article	IF	CITATIONS
19	The Biological Effect of an Antisense Oligonucleotide Depends on Its Route of Endocytosis and Trafficking. Oligonucleotides, 2010, 20, 103-109.	2.7	59
20	Evaluating the Specificity of Antisense Oligonucleotide Conjugates. Journal of Biological Chemistry, 2002, 277, 22980-22984.	3.4	54
21	Inhibition of MDR1 gene expression by chimeric HNA antisense oligonucleotides. Nucleic Acids Research, 2004, 32, 4411-4419.	14.5	50
22	Unconventional internalization mechanisms underlying functional delivery of antisense oligonucleotides via cationic lipoplexes and polyplexes. Journal of Controlled Release, 2011, 153, 83-92.	9.9	49
23	The small molecule Retro-1 enhances the pharmacological actions of antisense and splice switching oligonucleotides. Nucleic Acids Research, 2013, 41, 3673-3687.	14.5	47
24	Conditional Control of Alternative Splicing through Light-Triggered Splice-Switching Oligonucleotides. Journal of the American Chemical Society, 2015, 137, 3656-3662.	13.7	43
25	Cytosolic Delivery of Macromolecules in Live Human Cells Using the Combined Endosomal Escape Activities of a Small Molecule and Cell Penetrating Peptides. ACS Chemical Biology, 2019, 14, 2641-2651.	3.4	38
26	Structure–activity relationships and cellular mechanism of action of small molecules that enhance the delivery of oligonucleotides. Nucleic Acids Research, 2018, 46, 1601-1613.	14.5	29
27	Peptide-oligonucleotide conjugates for the delivery of antisense and siRNA. Current Opinion in Molecular Therapeutics, 2005, 7, 132-6.	2.8	28
28	The role of carrier size in the pharmacodynamics of antisense and siRNA oligonucleotides. Journal of Drug Targeting, 2010, 18, 567-574.	4.4	23
29	Conjugation with Receptor-Targeted Histidine-Rich Peptides Enhances the Pharmacological Effectiveness of Antisense Oligonucleotides. Bioconjugate Chemistry, 2014, 25, 165-170.	3.6	21
30	Impact of the Endosomal Escape Activity of Cell-Penetrating Peptides on the Endocytic Pathway. ACS Chemical Biology, 2020, 15, 2355-2363.	3.4	21
31	A Novel Family of Small Molecules that Enhance the Intracellular Delivery and Pharmacological Effectiveness of Antisense and Splice Switching Oligonucleotides. ACS Chemical Biology, 2017, 12, 1999-2007.	3.4	19
32	Hepatic distribution and clearance of antisense oligonucleotides in the isolated perfused rat liver. Pharmaceutical Research, 1997, 14, 516-521.	3.5	18
33	Addressing cancer signal transduction pathways with antisense and siRNA oligonucleotides. NAR Cancer, 2020, 2, zcaa025.	3.1	16
34	A Molecular Umbrella Approach to the Intracellular Delivery of Small Interfering RNA. Bioconjugate Chemistry, 2011, 22, 2210-2216.	3.6	14
35	Chemical Manipulation of the Endosome Trafficking Machinery: Implications for Oligonucleotide Delivery. Biomedicines, 2021, 9, 512.	3.2	14
36	Enhanced delivery of peptide-morpholino oligonucleotides with a small molecule to correct splicing defects in the lung. Nucleic Acids Research, 2021, 49, 6100-6113.	14.5	13

RudolphÂL Juliano

#	Article	IF	CITATIONS
37	DNA Threeâ€Way Junctions Stabilized by Hydrophobic Interactions for Creation of Functional Nanostructures. ChemBioChem, 2015, 16, 1284-1287.	2.6	9
38	Bugging Tumors to Put Drugs on Target. New England Journal of Medicine, 2007, 356, 954-955.	27.0	5
39	SCAI blocks MAL-evolent effects on cancer cell invasion. Nature Cell Biology, 2009, 11, 540-542.	10.3	5
40	Perspective from the founding editors. Advanced Drug Delivery Reviews, 2013, 65, 3-4.	13.7	3
41	Retroâ€l Analogues Differentially Affect Oligonucleotide Delivery and Toxin Trafficking. ChemMedChem, 2016, 11, 2506-2510.	3.2	3
42	Retro-1-Oligonucleotide Conjugates. Synthesis and Biological Evaluation. Molecules, 2019, 24, 579.	3.8	3
43	Biological Barriers to Nanocarrier-Mediated Delivery of Therapeutic and Imaging Agents. , 0, , 261-284.		1