Mathias Wallin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6753624/publications.pdf

Version: 2024-02-01

		279798	345221
57	1,473	23	36
papers	citations	h-index	g-index
57	57	57	1401
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Topology optimization of thermo-hyperelastic structures utilizing inverse motion based form finding. Engineering Optimization, 2023, 55, 110-124.	2.6	1
2	Nonlinear stiffness optimization with prescribed deformed geometry and loads. Structural and Multidisciplinary Optimization, 2022, 65, 1.	3. 5	2
3	Tunable phononic bandgap materials designed via topology optimization. Journal of the Mechanics and Physics of Solids, 2022, 163, 104849.	4.8	23
4	Plastic work constrained elastoplastic topology optimization. International Journal for Numerical Methods in Engineering, 2021, 122, 4354-4377.	2.8	4
5	Structural stability and artificial buckling modes in topology optimization. Structural and Multidisciplinary Optimization, 2021, 64, 1751-1763.	3.5	16
6	Topology optimization of bistable elastic structures — An application to logic gates. Computer Methods in Applied Mechanics and Engineering, 2021, 383, 113912.	6.6	5
7	A rate-dependent continuum model for rapid converting of paperboard. Applied Mathematical Modelling, 2021, 99, 497-513.	4.2	8
8	Multiscale eigenfrequency optimization of multimaterial lattice structures based on the asymptotic homogenization method. Structural and Multidisciplinary Optimization, 2020, 61, 983-998.	3.5	21
9	The influence of microstructure on crack propagation in cortical bone at the mesoscale. Journal of Biomechanics, 2020, 112, 110020.	2.1	12
10	Topology optimization for designing periodic microstructures based on finite strain viscoplasticity. Structural and Multidisciplinary Optimization, 2020, 61, 2501-2521.	3.5	14
11	Modelling of the Mechanical Response in 304 Austenitic Steel during Laser Shock Peening and Conventional Shot Peening. Procedia Manufacturing, 2020, 47, 450-457.	1.9	6
12	Eigenfrequency constrained topology optimization of finite strain hyperelastic structures. Structural and Multidisciplinary Optimization, 2020, 61, 2577-2594.	3.5	19
13	Topology optimization of compliant mechanisms considering strain variance. Structural and Multidisciplinary Optimization, 2020, 62, 1457-1471.	3.5	7
14	Differences in phase transformation in laser peened and shot peened 304 austenitic steel. International Journal of Mechanical Sciences, 2020, 176, 105535.	6.7	14
15	Nonlinear homogenization for topology optimization. Mechanics of Materials, 2020, 145, 103324.	3.2	19
16	Consistent boundary conditions for PDE filter regularization in topology optimization. Structural and Multidisciplinary Optimization, 2020, 62, 1299-1311.	3.5	31
17	Age-related properties at the microscale affect crack propagation in cortical bone. Journal of Biomechanics, 2019, 95, 109326.	2.1	19
18	Crack propagation in cortical bone is affected by the characteristics of the cement line: a parameter study using an XFEM interface damage model. Biomechanics and Modeling in Mechanobiology, 2019, 18, 1247-1261.	2.8	29

#	Article	IF	Citations
19	An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 556-565.	3.1	29
20	Diagonally implicit Runge–Kutta (DIRK) integration applied to finite strain crystal plasticity modeling. Computational Mechanics, 2018, 62, 1429-1441.	4.0	4
21	Topology optimization of finite strain viscoplastic systems under transient loads. International Journal for Numerical Methods in Engineering, 2018, 114, 1351-1367.	2.8	34
22	Cohesive zone modeling of crack propagation influenced by martensitic phase transformation. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 564-573.	5 . 6	3
23	Stiffness optimization of non-linear elastic structures. Computer Methods in Applied Mechanics and Engineering, 2018, 330, 292-307.	6.6	37
24	Efficient and accurate simulation of the packaging forming process. Packaging Technology and Science, 2018, 31, 557-566.	2.8	14
25	Localized Deformation in Compression and Folding of Paperboard. Packaging Technology and Science, 2016, 29, 397-414.	2.8	26
26	Modelling multi-scale deformation of amorphous glassy polymers with experimentally motivated evolution of the microstructure. Journal of the Mechanics and Physics of Solids, 2016, 96, 497-510.	4.8	11
27	Modelling and experiments of glassy polymers using biaxial loading and digital image correlation. International Journal of Solids and Structures, 2016, 102-103, 100-111.	2.7	7
28	Topology optimization based on finite strain plasticity. Structural and Multidisciplinary Optimization, 2016, 54, 783-793.	3 . 5	41
29	Measurement of multi-scale deformation of polycarbonate using X-ray scattering with in-situ loading and digital image correlation. Polymer, 2016, 82, 190-197.	3.8	7
30	Large strain phaseâ€fieldâ€based multiâ€material topology optimization. International Journal for Numerical Methods in Engineering, 2015, 104, 887-904.	2.8	26
31	Topology optimization utilizing inverse motion based form finding. Computer Methods in Applied Mechanics and Engineering, 2015, 289, 316-331.	6.6	12
32	An anisotropic in-plane and out-of-plane elasto-plastic continuum model for paperboard. Composite Structures, 2015, 126, 184-195.	5.8	54
33	Finite strain topology optimization based on phase-field regularization. Structural and Multidisciplinary Optimization, 2015, 51, 305-317.	3.5	10
34	Distortional hardening plasticity model for paperboard. International Journal of Solids and Structures, 2014, 51, 2411-2423.	2.7	40
35	Multi-scale Measurement of (Amorphous) Polymer Deformation: Simultaneous X-ray Scattering, Digital Image Correlation and In-situ Loading. Experimental Mechanics, 2014, 54, 1373-1383.	2.0	14
36	Boundary effects in a phase-field approach to topology optimization. Computer Methods in Applied Mechanics and Engineering, 2014, 278, 145-159.	6.6	15

#	Article	IF	CITATIONS
37	Howard's algorithm in a phaseâ€field topology optimization approach. International Journal for Numerical Methods in Engineering, 2013, 94, 43-59.	2.8	14
38	Modeling of the Long-Term Behavior of Glassy Polymers. Journal of Engineering Materials and Technology, Transactions of the ASME, 2013, 135, .	1.4	8
39	Numerical integration of elasto-plasticity coupled to damage using a diagonal implicit Runge–Kutta integration scheme. International Journal of Damage Mechanics, 2013, 22, 68-94.	4.2	9
40	Optimal topologies derived from a phase-field method. Structural and Multidisciplinary Optimization, 2012, 45, 171-183.	3.5	48
41	Modeling of continuous dynamic recrystallization in commercial-purity aluminum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1126-1134.	5. 6	85
42	Framework for deformation induced anisotropy in glassy polymers. Acta Mechanica, 2010, 211, 195-213.	2.1	9
43	Hybrid discrete dislocation models for fatigue crack growth. International Journal of Fatigue, 2010, 32, 1511-1520.	5.7	29
44	Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton. Computational Materials Science, 2010, 49, 25-34.	3.0	117
45	Multi-scale plasticity modeling: Coupled discrete dislocation and continuum crystal plasticity. Journal of the Mechanics and Physics of Solids, 2008, 56, 3167-3180.	4.8	32
46	Prediction of stored energy in polycrystalline materials during cyclic loading. International Journal of Solids and Structures, 2008, 45, 1570-1586.	2.7	23
47	Modeling of the Degradation of Elastic Properties due to the Evolution of Ductile Damage. International Journal of Damage Mechanics, 2008, 17, 149-172.	4.2	7
48	Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires. Nanotechnology, 2007, 18, 015504.	2.6	179
49	A Newton–Schur alternative to the consistent tangent approach in computational plasticity. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 1169-1177.	6.6	38
50	Thermodynamic format and heat generation of isotropic hardening plasticity. Acta Mechanica, 2007, 194, 103-121.	2.1	44
51	An alternative method for the integration of continuum damage evolution laws. Computational Mechanics, 2007, 41, 347-359.	4.0	12
52	Thermomechanical response of non-local porous material. International Journal of Plasticity, 2006, 22, 2066-2090.	8.8	21
53	Comparison of isotropic hardening and kinematic hardening in thermoplasticity. International Journal of Plasticity, 2005, 21, 1435-1460.	8.8	57
54	Deformation gradient based kinematic hardening model. International Journal of Plasticity, 2005, 21, 2025-2050.	8.8	42

#	Article	IF	CITATIONS
55	Kinematic hardening in large strain plasticity. European Journal of Mechanics, A/Solids, 2003, 22, 341-356.	3.7	42
56	Accurate stress updating algorithm based on constant strain rate assumption. Computer Methods in Applied Mechanics and Engineering, 2001, 190, 5583-5601.	6.6	23
57	A Constitutive Model for Ductile Damage Evolution. Key Engineering Materials, 0, 452-453, 621-624.	0.4	0