Patricia P Garcez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6753376/publications.pdf

Version: 2024-02-01

32 papers

2,628 citations

471509 17 h-index 501196 28 g-index

42 all docs 42 docs citations

42 times ranked 5225 citing authors

#	Article	IF	CITATIONS
1	Zika virus impairs growth in human neurospheres and brain organoids. Science, 2016, 352, 816-818.	12.6	1,016
2	microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nature Neuroscience, 2012, 15, 697-699.	14.8	250
3	Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses, 2016, 8, 322.	3 . 3	227
4	New insights into the development of the human cerebral cortex. Journal of Anatomy, 2019, 235, 432-451.	1.5	224
5	Zika virus disrupts molecular fingerprinting of human neurospheres. Scientific Reports, 2017, 7, 40780.	3.3	120
6	Zika virus infection leads to mitochondrial failure, oxidative stress and DNA damage in human iPSC-derived astrocytes. Scientific Reports, 2020, 10, 1218.	3.3	95
7	The CB ₁ Cannabinoid Receptor Drives Corticospinal Motor Neuron Differentiation through the Ctip2/Satb2 Transcriptional Regulation Axis. Journal of Neuroscience, 2012, 32, 16651-16665.	3.6	79
8	Ephrinâ€A5 acts as a repulsive cue for migrating cortical interneurons. European Journal of Neuroscience, 2008, 28, 62-73.	2.6	72
9	Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell, 2021, 28, 1362-1379.e7.	11.1	67
10	An antagonistic interaction between PlexinB2 and Rnd3 controls RhoA activity and cortical neuron migration. Nature Communications, 2014, 5, 3405.	12.8	60
11	Congenital Zika syndrome is associated with maternal protein malnutrition. Science Advances, 2020, 6, eaaw6284.	10.3	55
12	Cenpj/CPAP regulates progenitor divisions and neuronal migration in the cerebral cortex downstream of Ascl1. Nature Communications, 2015, 6, 6474.	12.8	51
13	Zika virus impairs the development of blood vessels in a mouse model of congenital infection. Scientific Reports, 2018, 8, 12774.	3.3	49
14	Connecting thalamus and cortex: The role of ephrins. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 135-142.	2.0	36
15	Why is congenital Zika syndrome asymmetrically distributed among human populations?. PLoS Biology, 2018, 16, e2006592.	5 . 6	32
16	The cyanobacterial saxitoxin exacerbates neural cell death and brain malformations induced by Zika virus. PLoS Neglected Tropical Diseases, 2020, 14, e0008060.	3.0	28
17	Loss of Cannabinoid CB ₁ Receptors Induces Cortical Migration Malformations and Increases Seizure Susceptibility. Cerebral Cortex, 2017, 27, 5303-5317.	2.9	23
18	Network of Interactions between ZIKA Virus Non-Structural Proteins and Human Host Proteins. Cells, 2020, 9, 153.	4.1	19

#	Article	IF	CITATIONS
19	Modeling the Human Brain With ex vivo Slices and in vitro Organoids for Translational Neuroscience. Frontiers in Neuroscience, 2022, 16, 838594.	2.8	16
20	Axons of callosal neurons bifurcate transiently at the white matter before consolidating an interhemispheric projection. European Journal of Neuroscience, 2007, 25, 1384-1394.	2.6	14
21	The potential contribution of impaired brain glucose metabolism to congenital Zika syndrome. Journal of Anatomy, 2019, 235, 468-480.	1.5	13
22	Neurodevelopment in Children Exposed to Zika in utero: Clinical and Molecular Aspects. Frontiers in Genetics, 2022, 13, 758715.	2.3	12
23	Dissecting the Toxic Effects of Zika Virus Proteins on Neural Progenitor Cells. Neuron, 2019, 101, 989-991.	8.1	9
24	Temporal and spatial regulation of interneuron distribution in the developing cerebral cortexâ€"an in vitro study. Neuroscience, 2012, 201, 357-365.	2.3	6
25	Proteomics of ZIKV infected amniotic fluids of microcephalic fetuses reveals extracellular matrix and immune system dysregulation. Proteomics - Clinical Applications, 2022, 16, e2100041.	1.6	5
26	The Dynamics of Axon Bifurcation Development in the Cerebral Cortex of Typical and Acallosal Mice. Neuroscience, 2021, 477, 14-24.	2.3	4
27	Myelination of Callosal Axons Is Hampered by Early and Late Forelimb Amputation in Rats. Cerebral Cortex Communications, 2021, 2, tgaa090.	1.6	2
28	Zika Virus Strains and Dengue Virus Induce Distinct Proteomic Changes in Neural Stem Cells and Neurospheres. Molecular Neurobiology, 2022, 59, 5549-5563.	4.0	2
29	Study of miRNA Function in the Developing Axons of Mouse Cortical Neurons: Use of Compartmentalized Microfluidic Chambers and In Utero Electroporation. Neuromethods, 2016, , 59-71.	0.3	1
30	In vivo mouse models to investigate the microcephaly associated with Zika virus., 2021,, 451-462.		1
31	Microcephaly gene Cenpj regulates axonal growth in cortical neurons through microtubule destabilization. Journal of Neurochemistry, 2021, , .	3.9	0
32	Centromere protein J is overexpressed in human glioblastoma and promotes cell proliferation and migration. Journal of Neurochemistry, 0, , .	3.9	0