Antti-Pekka Jauho

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6752747/antti-pekka-jauho-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

224 10,337 53 96 g-index

240 11,345 4.4 6.36 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
224	Have mysterious topological valley currents been observed in graphene superlattices?. <i>JPhys Materials</i> , 2022 , 5, 021001	4.2	1
223	Valley Hall effect and nonlocal resistance in locally gapped graphene. <i>Physical Review B</i> , 2021 , 103,	3.3	4
222	Quantum surface-response of metals revealed by acoustic graphene plasmons. <i>Nature Communications</i> , 2021 , 12, 3271	17.4	11
221	Fermi velocity renormalization in graphene probed by terahertz time-domain spectroscopy. <i>2D Materials</i> , 2020 , 7, 035009	5.9	10
220	Role of diffusive surface scattering in nonlocal plasmonics. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 395702	1.8	5
219	Plasmon-emitter interactions at the nanoscale. <i>Nature Communications</i> , 2020 , 11, 366	17.4	38
218	Coulomb drag between a carbon nanotube and monolayer graphene. <i>Physical Review Research</i> , 2020 , 2,	3.9	5
217	Josephson effect in graphene bilayers with adjustable relative displacement. <i>Physical Review Research</i> , 2020 , 2,	3.9	2
216	Moirleffects in graphene-hBN heterostructures. <i>Physical Review Research</i> , 2020 , 2,	3.9	3
215	Electron and hole transport in disordered monolayer MoS2: Atomic vacancy induced short-range and Coulomb disorder scattering. <i>Physical Review B</i> , 2019 , 100,	3.3	11
214	Gate electrostatics and quantum capacitance in ballistic graphene devices. <i>Physical Review B</i> , 2019 , 99,	3.3	3
213	Control of superconducting pairing symmetries in monolayer black phosphorus. <i>Physical Review B</i> , 2019 , 99,	3.3	14
212	Symmetry of superconducting correlations in displaced bilayers of graphene. <i>Physical Review B</i> , 2019 , 99,	3.3	18
211	Fluctuation-driven Coulomb drag in interacting quantum dot systems. <i>Physical Review B</i> , 2019 , 100,	3.3	7
210	Quantum Interference Engineering of Nanoporous Graphene for Carbon Nanocircuitry. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13081-13088	16.4	17
209	Tunable valley Hall effect in gate-defined graphene superlattices. <i>Physical Review B</i> , 2019 , 100,	3.3	3
208	Lithographic band structure engineering of graphene. <i>Nature Nanotechnology</i> , 2019 , 14, 340-346	28.7	44

207	Correlated Topological States in Graphene Nanoribbon Heterostructures. <i>Nano Letters</i> , 2019 , 19, 9045	-9059	10
206	Signatures of adatom effects in the quasiparticle spectrum of Li-doped graphene. <i>Physical Review B</i> , 2019 , 100,	3.3	6
205	Probing the nanoscale origin of strain and doping in graphene-hBN heterostructures. <i>2D Materials</i> , 2019 , 6, 015022	5.9	8
204	Electron Waiting Times of a Cooper Pair Splitter. <i>Physical Review Letters</i> , 2018 , 120, 087701	7.4	25
203	Conductance quantization suppression in the quantum Hall regime. <i>Nature Communications</i> , 2018 , 9, 659	17.4	18
202	Strain-engineered Majorana zero energy modes and 0 Josephson state in black phosphorus. <i>Physical Review B</i> , 2018 , 98,	3.3	32
201	Probing nonlocal effects in metals with graphene plasmons. <i>Physical Review B</i> , 2018 , 97,	3.3	29
200	Fraunhofer response and supercurrent spin switching in black phosphorus with strain and disorder. <i>Physical Review B</i> , 2018 , 98,	3.3	20
199	Charge and spin transport anisotropy in nanopatterned graphene. JPhys Materials, 2018, 1, 015005	4.2	5
198	Ballistic tracks in graphene nanoribbons. <i>Nature Communications</i> , 2018 , 9, 4426	17.4	31
198	Ballistic tracks in graphene nanoribbons. <i>Nature Communications</i> , 2018 , 9, 4426 Classification of DNA nucleotides with transverse tunneling currents. <i>Nanotechnology</i> , 2017 , 28, 01550		31 7
197	Classification of DNA nucleotides with transverse tunneling currents. <i>Nanotechnology</i> , 2017 , 28, 01550	23.4	7
197	Classification of DNA nucleotides with transverse tunneling currents. <i>Nanotechnology</i> , 2017 , 28, 01550 Nanostructured graphene for spintronics. <i>Physical Review B</i> , 2017 , 95, Strong Plasmon-Phonon Splitting and Hybridization in 2D Materials Revealed through a Self-Energy	2 _{3.4}	7
197 196 195	Classification of DNA nucleotides with transverse tunneling currents. <i>Nanotechnology</i> , 2017 , 28, 01550 Nanostructured graphene for spintronics. <i>Physical Review B</i> , 2017 , 95, Strong Plasmon-Phonon Splitting and Hybridization in 2D Materials Revealed through a Self-Energy Approach. <i>ACS Photonics</i> , 2017 , 4, 2908-2915 Thermoelectrics in Coulomb-coupled quantum dots: Cotunneling and energy-dependent lead	2 _{3.4} 3.3 6.3	7 12 9
197 196 195	Classification of DNA nucleotides with transverse tunneling currents. <i>Nanotechnology</i> , 2017 , 28, 01550 Nanostructured graphene for spintronics. <i>Physical Review B</i> , 2017 , 95, Strong Plasmon-Phonon Splitting and Hybridization in 2D Materials Revealed through a Self-Energy Approach. <i>ACS Photonics</i> , 2017 , 4, 2908-2915 Thermoelectrics in Coulomb-coupled quantum dots: Cotunneling and energy-dependent lead couplings. <i>Physical Review B</i> , 2017 , 96, Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems. <i>Physical Review</i>	2 _{3.4} 3.3 6.3	7 12 9 29
197 196 195 194	Classification of DNA nucleotides with transverse tunneling currents. <i>Nanotechnology</i> , 2017 , 28, 01550 Nanostructured graphene for spintronics. <i>Physical Review B</i> , 2017 , 95, Strong Plasmon-Phonon Splitting and Hybridization in 2D Materials Revealed through a Self-Energy Approach. <i>ACS Photonics</i> , 2017 , 4, 2908-2915 Thermoelectrics in Coulomb-coupled quantum dots: Cotunneling and energy-dependent lead couplings. <i>Physical Review B</i> , 2017 , 96, Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems. <i>Physical Review Letters</i> , 2017 , 119, 126801 Electron trajectories and magnetotransport in nanopatterned graphene under commensurability	2 _{3.4} 3.3 6.3 7.4	7 12 9 29

189	Spin-Caloritronic Batteries. Physical Review Applied, 2017, 8,	4.3	7
188	Electronic transport in graphene nanoribbons with sublattice-asymmetric doping. <i>Physical Review B</i> , 2016 , 93,	3.3	10
187	Pseudomagnetic fields and triaxial strain in graphene. <i>Physical Review B</i> , 2016 , 93,	3.3	36
186	Electron Interference in Ballistic Graphene Nanoconstrictions. <i>Physical Review Letters</i> , 2016 , 116, 18660) 2 7.4	20
185	Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures. <i>Physical Review Letters</i> , 2016 , 116, 196801	7.4	24
184	Robust band gap and half-metallicity in graphene with triangular perforations. <i>Physical Review B</i> , 2016 , 93,	3.3	6
183	All-graphene edge contacts: Electrical resistance of graphene T-junctions. <i>Carbon</i> , 2016 , 101, 101-106	10.4	7
182	Graphene Nanobubbles as Valley Filters and Beam Splitters. <i>Physical Review Letters</i> , 2016 , 117, 276801	7.4	86
181	Quantum transport in graphene in presence of strain-induced pseudo-Landau levels. <i>2D Materials</i> , 2016 , 3, 034005	5.9	12
180	Plasma wave instabilities in nonequilibrium graphene. <i>Physical Review B</i> , 2016 , 94,	3.3	8
179	Magnetic edge states and magnetotransport in graphene antidot barriers. <i>Physical Review B</i> , 2016 , 94,	3.3	7
178	Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles. <i>Scientific Reports</i> , 2015 , 5, 953	B 5 4.9	48
177	Patched Green's function techniques for two-dimensional systems: Electronic behavior of bubbles and perforations in graphene. <i>Physical Review B</i> , 2015 , 91,	3.3	27
176	Graphene on graphene antidot lattices: Electronic and transport properties. <i>Physical Review B</i> , 2015 , 91,	3.3	13
175	Localized plasmons in graphene-coated nanospheres. <i>Physical Review B</i> , 2015 , 91,	3.3	78
174	Electron polarization function and plasmons in metallic armchair graphene nanoribbons. <i>Physical Review B</i> , 2015 , 91,	3.3	10
173	Thermally Driven Pure Spin and Valley Currents via the Anomalous Nernst Effect in Monolayer Group-VI Dichalcogenides. <i>Physical Review Letters</i> , 2015 , 115, 246601	7·4	36
172	Kerr nonlinearity and plasmonic bistability in graphene nanoribbons. <i>Physical Review B</i> , 2015 , 92,	3.3	57

171	Bubbles in graphene - a computational study. <i>Journal of Physics: Conference Series</i> , 2015 , 647, 012022	0.3	10
170	Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene. <i>Physical Review Letters</i> , 2014 , 112, 096801	7.4	24
169	Nonlocal response of metallic nanospheres probed by light, electrons, and atoms. <i>ACS Nano</i> , 2014 , 8, 1745-58	16.7	120
168	Optical bistability of graphene in the terahertz range. <i>Physical Review B</i> , 2014 , 90,	3.3	112
167	Plasmon-mediated Coulomb drag between graphene waveguides. <i>Physical Review B</i> , 2014 , 89,	3.3	5
166	Electronic transport in disordered graphene antidot lattice devices. <i>Physical Review B</i> , 2014 , 90,	3.3	30
165	Dual-probe spectroscopic fingerprints of defects in graphene. <i>Physical Review B</i> , 2014 , 90,	3.3	9
164	Classical and quantum plasmonics in graphene nanodisks: Role of edge states. <i>Physical Review B</i> , 2014 , 90,	3.3	57
163	Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes. <i>Plasmonics</i> , 2013 , 8, 193-199	2.4	59
162	Microscopic theory of indistinguishable single-photon emission from a quantum dot coupled to a cavity: The role of non-Markovian phonon-induced decoherence. <i>Physical Review B</i> , 2013 , 87,	3.3	42
161	Electronic properties of disordered graphene antidot lattices. <i>Physical Review B</i> , 2013 , 87,	3.3	30
160	Nonlocal response in plasmonic waveguiding with extreme light confinement. <i>Nanophotonics</i> , 2013 , 2, 161-166	6.3	54
159	Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. <i>Physical Review B</i> , 2013 , 87,	3.3	195
158	Screening and collective modes in disordered graphene antidot lattices. <i>Physical Review B</i> , 2013 , 88,	3.3	11
157	Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. <i>Nanophotonics</i> , 2013 , 2, 131-138	6.3	149
156	Electronic and transport properties of kinked graphene. <i>Beilstein Journal of Nanotechnology</i> , 2013 , 4, 103-10	3	19
155	Clar sextets in square graphene antidot lattices. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2012 , 44, 967-970	3	6
154	Dynamical polarizability of graphene irradiated by circularly polarized ac electric fields. <i>Physical Review B</i> , 2012 , 85,	3.3	52

153	Fundamental limitations to gain enhancement in periodic media and waveguides. <i>Physical Review Letters</i> , 2012 , 108, 183903	7.4	32
152	Electronic transport in graphene-based structures: An effective cross-section approach. <i>Physical Review B</i> , 2012 , 85,	3.3	11
151	Surface-enhanced Raman spectroscopy: nonlocal limitations. <i>Optics Letters</i> , 2012 , 37, 2538-40	3	42
150	Nanoplasmonics beyond Ohm's law 2012 ,		4
149	Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. <i>Optics Express</i> , 2012 , 20, 4176-88	3.3	196
148	Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED. <i>Physical Review B</i> , 2012 , 86,	3.3	43
147	Clar sextet analysis of triangular, rectangular, and honeycomb graphene antidot lattices. <i>ACS Nano</i> , 2011 , 5, 523-9	16.7	88
146	Screening in graphene antidot lattices. <i>Physical Review B</i> , 2011 , 84,	3.3	13
145	Thermoelectric properties of finite graphene antidot lattices. <i>Physical Review B</i> , 2011 , 84,	3.3	112
144	Electron transport in edge-disordered graphene nanoribbons. <i>Physical Review B</i> , 2011 , 83,	3.3	25
143	Unusual resonances in nanoplasmonic structures due to nonlocal response. <i>Physical Review B</i> , 2011 , 84,	3.3	180
142	Field enhancement at metallic interfaces due to quantum confinement. <i>Journal of Nanophotonics</i> , 2011 , 5, 051602	1.1	20
141	Plasmonic nanostructures: local versus nonlocal response 2010,		10
140	Localized edge vibrations and edge reconstruction by joule heating in graphene nanostructures. <i>Physical Review Letters</i> , 2010 , 104, 036807	7.4	32
139	Influence of confining potentials on the exchange coupling in double quantum dots. <i>Physical Review B</i> , 2010 , 81,	3.3	4
138	Scattering cross section of metal catalyst atoms in silicon nanowires. <i>Physical Review B</i> , 2010 , 81,	3.3	8
137	Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system. <i>Physical Review Letters</i> , 2010 , 104, 157401	7.4	81
136	Counting statistics of transport through Coulomb blockade nanostructures: High-order cumulants and non-Markovian effects. <i>Physical Review B</i> , 2010 , 82,	3.3	108

135	Slow-light enhanced absorption in a hollow-core fiber. <i>Optics Express</i> , 2010 , 18, 14270-9	3.3	12
134	Atomic carbon chains as spin-transmitters: An ab initio transport study. <i>Europhysics Letters</i> , 2010 , 91, 37002	1.6	26
133	Ab initio vibrations in nonequilibrium nanowires. <i>Journal of Physics: Conference Series</i> , 2010 , 220, 0120	100.3	1
132	Atomistic theory for the damping of vibrational modes in monoatomic gold chains. <i>Physical Review B</i> , 2009 , 80,	3.3	17
131	Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics. <i>Physical Review Letters</i> , 2009 , 103, 055502	7.4	132
130	Corrections to the density-functional theory electronic spectrum: copper phthalocyanine. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 95, 257-263	2.6	11
129	Comparison of electromagnetically induced transparency schemes in semiconductor quantum dot structures: Impact of many-body interactions. <i>Physical Review B</i> , 2009 , 79,	3.3	21
128	Optical response and excitons in gapped graphene. <i>Physical Review B</i> , 2009 , 79,	3.3	65
127	Electronic properties of graphene antidot lattices. New Journal of Physics, 2009, 11, 095020	2.9	118
126	Density functional study of graphene antidot lattices: Roles of geometrical relaxation and spin. <i>Physical Review B</i> , 2009 , 80,	3.3	52
125	Electron and phonon transport in silicon nanowires: Atomistic approach to thermoelectric properties. <i>Physical Review B</i> , 2009 , 79,	3.3	154
124	Thermal rectification in nonlinear quantum circuits. <i>Physical Review B</i> , 2009 , 79,	3.3	79
123	Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations. <i>Physical Review B</i> , 2009 , 80,	3.3	27
122	Optical properties and optimization of electromagnetically induced transparency in strained InAs/GaAs quantum dot structures. <i>Physical Review B</i> , 2009 , 80,	3.3	36
121	Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms. <i>Physical Review B</i> , 2008 , 78,	3.3	36
120	Influence of many-particle interactions on slow light phenomena in quantum dots. <i>Journal of Physics: Conference Series</i> , 2008 , 107, 012005	0.3	4
119	Optical properties of graphene antidot lattices. <i>Physical Review B</i> , 2008 , 77,	3.3	98
118	Heat conductance is strongly anisotropic for pristine silicon nanowires. <i>Nano Letters</i> , 2008 , 8, 3771-5	11.5	82

117	Graphene antidot lattices: designed defects and spin qubits. Physical Review Letters, 2008, 100, 136804	7.4	409
116	Modeling transport in ultrathin Si nanowires: charged versus neutral impurities. <i>Nano Letters</i> , 2008 , 8, 2825-8	11.5	31
115	Counting statistics of non-Markovian quantum stochastic processes. <i>Physical Review Letters</i> , 2008 , 100, 150601	7.4	166
114	Mesoscopic photon heat transistor. <i>Physical Review Letters</i> , 2008 , 100, 155902	7.4	77
113	Spin qubits in antidot lattices. <i>Physical Review B</i> , 2008 , 77,	3.3	13
112	Spin-polarized current and shot noise in the presence of spin flip in a quantum dot via nonequilibrium Green functions. <i>Physical Review B</i> , 2008 , 78,	3.3	63
111	Nanostructure design for surface-enhanced Raman spectroscopy prospects and limits. <i>Journal of the European Optical Society-Rapid Publications</i> , 2008 , 3,	2.5	13
110	Transport in silicon nanowires: role of radial dopant profile. <i>Journal of Computational Electronics</i> , 2008 , 7, 324-327	1.8	15
109	Designed defects in 2D antidot lattices for quantum information processing. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2008 , 40, 1075-1077	3	1
108			
100	Electronic Transport in Nanowires at Different Length Scales. <i>Mathematics in Industry</i> , 2008 , 404-420	0.2	
107	Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires. Physical Review Letters, 2007, 99, 076803	7.4	100
	Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires.		100
107	Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires. Physical Review Letters, 2007, 99, 076803 Inelastic transport theory from first principles: Methodology and application to nanoscale devices.	7.4	
107	Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires. Physical Review Letters, 2007, 99, 076803 Inelastic transport theory from first principles: Methodology and application to nanoscale devices. Physical Review B, 2007, 75, Failure of standard approximations of the exchange coupling in nanostructures. Physical Review B,	7·4 3·3	330
107 106 105	Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires. <i>Physical Review Letters</i> , 2007 , 99, 076803 Inelastic transport theory from first principles: Methodology and application to nanoscale devices. <i>Physical Review B</i> , 2007 , 75, Failure of standard approximations of the exchange coupling in nanostructures. <i>Physical Review B</i> , 2007 , 76, Transient charging and discharging of spin-polarized electrons in a quantum dot. <i>Physical Review B</i> ,	7.4 3.3 3.3	330
107 106 105	Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires. <i>Physical Review Letters</i> , 2007 , 99, 076803 Inelastic transport theory from first principles: Methodology and application to nanoscale devices. <i>Physical Review B</i> , 2007 , 75, Failure of standard approximations of the exchange coupling in nanostructures. <i>Physical Review B</i> , 2007 , 76, Transient charging and discharging of spin-polarized electrons in a quantum dot. <i>Physical Review B</i> , 2007 , 76,	7.4 3.3 3.3	33 ⁰ 29
107 106 105 104	Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires. <i>Physical Review Letters</i> , 2007 , 99, 076803 Inelastic transport theory from first principles: Methodology and application to nanoscale devices. <i>Physical Review B</i> , 2007 , 75, Failure of standard approximations of the exchange coupling in nanostructures. <i>Physical Review B</i> , 2007 , 76, Transient charging and discharging of spin-polarized electrons in a quantum dot. <i>Physical Review B</i> , 2007 , 76, Quantum dot as a spin-current diode: A master-equation approach. <i>Physical Review B</i> , 2007 , 75,	7.4 3.3 3.3 3.3	33° 29 18

(2003-2005)

99	Quantum computing via defect states in two-dimensional antidot lattices. Nano Letters, 2005, 5, 2515-8	3 11.5	20
98	Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study. <i>Physical Review B</i> , 2005 , 71,	3.3	32
97	Simple models suffice for the single-dot quantum shuttle. New Journal of Physics, 2005, 7, 237-237	2.9	24
96	Current noise spectrum of a quantum shuttle. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2005 , 29, 411-418	3	38
95	Current and current fluctuations in quantum shuttles. <i>Physics of Fluids</i> , 2005 , 17, 100613	4.4	9
94	Noise and Bistabilities in Quantum Shuttles. AIP Conference Proceedings, 2005,	Ο	2
93	Full counting statistics of nano-electromechanical systems. Europhysics Letters, 2005, 69, 475-481	1.6	118
92	TMR effect in a FM-QD-FM system. <i>Brazilian Journal of Physics</i> , 2004 , 34, 565-567	1.2	10
91	Quantum theory of shuttling instability in a movable quantum dot array. <i>Semiconductor Science and Technology</i> , 2004 , 19, S430-S432	1.8	5
90	Current noise in a vibrating quantum dot array. <i>Physical Review B</i> , 2004 , 70,	3.3	97
89	Shot noise of a quantum shuttle. <i>Physical Review Letters</i> , 2004 , 92, 248302	7.4	98
89 88	Shot noise of a quantum shuttle. <i>Physical Review Letters</i> , 2004 , 92, 248302 Inelastic scattering and local heating in atomic gold wires. <i>Physical Review Letters</i> , 2004 , 93, 256601	7·4 7·4	98
		7.4	
88	Inelastic scattering and local heating in atomic gold wires. <i>Physical Review Letters</i> , 2004 , 93, 256601	7.4	194
88	Inelastic scattering and local heating in atomic gold wires. <i>Physical Review Letters</i> , 2004 , 93, 256601 Modelling of Quantum Electromechanical Systems. <i>Journal of Computational Electronics</i> , 2004 , 3, 367-3 Modeling of Inelastic Transport in One-Dimensional Metallic Atomic Wires. <i>Journal of</i>	7.4 7 11 .8	194
88 87 86	Inelastic scattering and local heating in atomic gold wires. <i>Physical Review Letters</i> , 2004 , 93, 256601 Modelling of Quantum Electromechanical Systems. <i>Journal of Computational Electronics</i> , 2004 , 3, 367-3 Modeling of Inelastic Transport in One-Dimensional Metallic Atomic Wires. <i>Journal of Computational Electronics</i> , 2004 , 3, 423-427 Shuttle instabilities: semiclassical phase analysis. <i>Physica E: Low-Dimensional Systems and</i>	7·4 7 ·1 .8	194 1
88 87 86 85	Inelastic scattering and local heating in atomic gold wires. <i>Physical Review Letters</i> , 2004 , 93, 256601 Modelling of Quantum Electromechanical Systems. <i>Journal of Computational Electronics</i> , 2004 , 3, 367-3 Modeling of Inelastic Transport in One-Dimensional Metallic Atomic Wires. <i>Journal of Computational Electronics</i> , 2004 , 3, 423-427 Shuttle instabilities: semiclassical phase analysis. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 22, 721-724 Coulomb drag in multiwall armchair carbon nanotubes. <i>Semiconductor Science and Technology</i> , 2004	7·4 7·11.8 1.8	194 1 13 3

81	Quantum shuttle in phase space. <i>Physical Review Letters</i> , 2003 , 90, 256801	7.4	103
80	Sign reversal of drag in bilayer systems with in-plane periodic potential modulation. <i>Physical Review B</i> , 2002 , 66,	3.3	7
79	Mesoscopic fluctuations of Coulomb drag between quasiballistic one-dimensional wires. <i>Physical Review B</i> , 2002 , 65,	3.3	14
78	Coulomb drag in coherent mesoscopic systems. <i>Physical Review Letters</i> , 2001 , 86, 1841-4	7.4	32
77	Dephasing in semiconductor Superconductor structures by coupling to a voltage probe. <i>Superlattices and Microstructures</i> , 2000 , 28, 67-76	2.8	10
76	Dephasing times in quantum dots due to elastic LO phonon-carrier collisions. <i>Physical Review Letters</i> , 2000 , 85, 1516-9	7.4	73
75	Conductance enhancement in quantum-point-contact semiconductor-superconductor devices. <i>Physical Review B</i> , 1999 , 60, 13762-13769	3.3	7
74	Inelastic Quantum Transport in Superlattices: Success and Failure of the Boltzmann Equation. <i>Physical Review Letters</i> , 1999 , 83, 836-839	7.4	56
73	Simulations of interference effects in gated two-dimensional ballistic electron systems. <i>Physical Review B</i> , 1999 , 60, 8191-8198	3.3	3
72	Resonant tunneling in a pulsed phonon field. <i>Physical Review B</i> , 1999 , 59, 7656-7662	3.3	6
71	Angle dependence of Andreev scattering at semiconductor uperconductor interfaces. <i>Physical Review B</i> , 1999 , 59, 10176-10182	3.3	55
70	Quasienergy Spectroscopy of Excitons. <i>Physical Review Letters</i> , 1999 , 83, 1207-1210	7.4	48
69	Current responsivity of semiconductor superlattice THz-photon detectors. <i>Journal of Applied Physics</i> , 1999 , 85, 3643-3654	2.5	32
68	Contact resistance of quantum tubes. Superlattices and Microstructures, 1999, 26, 351-361	2.8	5
67	Transport in Semiconductor Superlattices: From Quantum Kinetics to Terahertz-Photon Detectors 1999 , 171-192		
66	Linear optical absorption spectra of mesoscopic structures in intense THz fields: Free-particle properties. <i>Physical Review B</i> , 1998 , 57, 8860-8872	3.3	58
65	Impact of interface roughness on perpendicular transport and domain formation in superlattices. <i>Superlattices and Microstructures</i> , 1998 , 23, 297-300	2.8	6
64	Strong impact of impurity bands on domain formation in superlattices. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 1998 , 2, 493-497	3	

63	Excitonic Dynamical Franz-Keldysh Effect. <i>Physical Review Letters</i> , 1998 , 81, 457-460	7.4	156
62	Quantum Transport: The Link between Standard Approaches in Superlattices. <i>Physical Review Letters</i> , 1998 , 80, 369-372	7.4	97
61	Theory of phase-sensitive measurement of photon-assisted tunneling through a quantum dot. <i>Physical Review B</i> , 1998 , 58, 9619-9622	3.3	23
60	Microscopic Theory of Transconductivity. VLSI Design, 1998, 6, 87-90		
59	Quantum transport theory 1998 , 127-171		1
58	Frictional Coulomb drag in strong magnetic fields. <i>Physical Review B</i> , 1997 , 56, 10314-10325	3.3	24
57	Sequential tunneling in doped superlattices: Fingerprints of impurity bands and photon-assisted tunneling. <i>Physical Review B</i> , 1997 , 56, 13268-13278	3.3	28
56	Microscopic modelling of perpendicular electronic transport in doped multiple quantum wells. <i>Physica Scripta</i> , 1997 , T69, 321-324	2.6	12
55	Nonequilibrium absorption in semiconductors and the dynamical Franz-Keldysh effect. <i>Physica Scripta</i> , 1997 , T69, 177-180	2.6	2
54	Observation of Dynamical Franz-Keldysh Effect. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 52-	541.3	19
54	Observation of Dynamical Franz-Keldysh Effect. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 52-Linear Optical Absorption in THz Irradiated Undoped Semiconductor Superlattices. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 55-57	1.3	3
	Linear Optical Absorption in THz Irradiated Undoped Semiconductor Superlattices. <i>Physica Status</i>		
53	Linear Optical Absorption in THz Irradiated Undoped Semiconductor Superlattices. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 55-57 Transport in a Weakly-Coupled Superlattice: A Quantitative Approach for Photon-Assisted	1.3	3
53 52	Linear Optical Absorption in THz Irradiated Undoped Semiconductor Superlattices. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 55-57 Transport in a Weakly-Coupled Superlattice: A Quantitative Approach for Photon-Assisted Tunneling. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 73-76 Possible THz Gain in Superlattices at a Stable Operation Point. <i>Physica Status Solidi (B): Basic</i>	1.3	3
53 52 51	Linear Optical Absorption in THz Irradiated Undoped Semiconductor Superlattices. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 55-57 Transport in a Weakly-Coupled Superlattice: A Quantitative Approach for Photon-Assisted Tunneling. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 73-76 Possible THz Gain in Superlattices at a Stable Operation Point. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 95-97	1.3	3 4 9
53 52 51 50	Linear Optical Absorption in THz Irradiated Undoped Semiconductor Superlattices. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 55-57 Transport in a Weakly-Coupled Superlattice: A Quantitative Approach for Photon-Assisted Tunneling. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 73-76 Possible THz Gain in Superlattices at a Stable Operation Point. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 95-97 Optics of Excitons in THz Irradiated Quantum Wells. <i>Physica Status Solidi A</i> , 1997 , 164, 553-556	1.3	3 4 9 6
53 52 51 50 49	Linear Optical Absorption in THz Irradiated Undoped Semiconductor Superlattices. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 55-57 Transport in a Weakly-Coupled Superlattice: A Quantitative Approach for Photon-Assisted Tunneling. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 73-76 Possible THz Gain in Superlattices at a Stable Operation Point. <i>Physica Status Solidi (B): Basic Research</i> , 1997 , 204, 95-97 Optics of Excitons in THz Irradiated Quantum Wells. <i>Physica Status Solidi A</i> , 1997 , 164, 553-556 Dynamical Franz-Keldysh effect. <i>Physical Review Letters</i> , 1996 , 76, 4576-4579 Magneto-Coulomb Drag: Interplay of Electron-Electron Interactions and Landau Quantization.	1.3 1.3 1.3	3 4 9 6 169

45	Coherent transport in superlattices and tunneling structures. <i>Physica Status Solidi (B): Basic Research</i> , 1995 , 188, 405-415	1.3	2
44	Linear-response theory of Coulomb drag in coupled electron systems. <i>Physical Review B</i> , 1995 , 52, 1476	513.347	74 89
43	Bloch oscillations, Zener tunneling, and Wannier-Stark ladders in the time domain. <i>Physical Review Letters</i> , 1995 , 74, 1831-1834	7.4	96
42	Interacting and Coherent Time-Dependent Transport in Semiconductor Heterostructures. <i>NATO ASI Series Series B: Physics</i> , 1995 , 301-327		
41	Plasma instabilities in high electric fields. <i>Physical Review E</i> , 1994 , 50, 474-479	2.4	13
40	Time-dependent transport in interacting and noninteracting resonant-tunneling systems. <i>Physical Review B</i> , 1994 , 50, 5528-5544	3.3	1531
39	Time-dependent transport in mesoscopic systems: general formalism and applications. <i>Semiconductor Science and Technology</i> , 1994 , 9, 926-929	1.8	9
38	Time-dependent transport through a mesoscopic structure. <i>Physical Review B</i> , 1993 , 48, 8487-8490	3.3	283
37	Coulomb drag between parallel two-dimensional electron systems. <i>Physical Review B</i> , 1993 , 47, 4420-44	4383	208
36	Numerical studies of tunneling in a nonharmonic time-dependent potential. <i>Physical Review B</i> , 1993 , 47, 10446-10451	3.3	6
35	Gauge-invariant description of nonlinear quantum transport of weakly coupled electron-phonon systems in uniform electric fields. <i>Semiconductor Science and Technology</i> , 1992 , 7, B33-B35	1.8	1
34	Quantum transport theory for electron-phonon systems in strong electric fields. <i>Physical Review Letters</i> , 1992 , 68, 2826-2829	7.4	10
33	Self-consistent modelling of resonant tunnelling structures. Surface Science, 1992, 267, 392-395	1.8	14
32	Green∃ Function Methods: Nonequilibrium, High-Field Transport 1992 , 141-168		
31	Wave Packet Studies of Tunneling through Time-Modulated Semiconductor Heterostructures 1992 , 17	9-192	
30	Gauge-invariant formulation of the intracollisional field effect including collisional broadening. <i>Physical Review B</i> , 1991 , 44, 3655-3664	3.3	53
29	Self-consistent model for two-dimensional accumulation layer states in resonant tunneling devices. <i>Applied Physics Letters</i> , 1991 , 59, 2245-2247	3.4	14
28	. IEEE Photonics Technology Letters, 1991 , 3, 606-609	2.2	130

27	Nonequilibrium Green Function Techniques Applied to Hot-Electron Quantum Transport. <i>NATO ASI Series Series B: Physics</i> , 1991 , 133-144		3	
26	Elastic and Inelastic Resonant Tunneling in an Imperfect Superlattice. <i>NATO ASI Series Series B: Physics</i> , 1991 , 535-537			
25	Elastic and inelastic resonant tunnelling in narrow-band systems: application to transport in minibands of semiconductor superlattices. <i>Journal of Physics Condensed Matter</i> , 1990 , 2, 8725-8729	1.8	11	
24	Numerical simulations of resonant tunneling in the presence of inelastic processes. <i>Physical Review B</i> , 1990 , 41, 12327-12329	3.3	40	
23	Tunnelling through a time-modulated barrier-relation to tunnelling times. <i>Journal of Physics Condensed Matter</i> , 1989 , 1, 9027-9033	1.8	27	
22	Tunneling times in heterostructures. Superlattices and Microstructures, 1989, 6, 303-307	2.8	36	
21	Position broadening effect in hot-electron transport. Solid-State Electronics, 1989, 32, 1167-1171	1.7	6	
20	Nonequilibrium green function techniques applied to hot electron quantum transport. <i>Solid-State Electronics</i> , 1989 , 32, 1265-1271	1.7	31	
19	Quantum Kinetic Equations for Strongly Inhomogenous Systems. <i>Physica Scripta</i> , 1989 , T25, 329-332	2.6	11	
18	Quantum corrections to the Monte Carlo solution of hot-electron transport in semiconductors. <i>Solid-State Electronics</i> , 1988 , 31, 535-538	1.7	11	
17	Monte Carlo algorithms for collisional broadening and intracollisional field effect in semiconductor high-field transport. <i>Journal of Applied Physics</i> , 1988 , 64, 3072-3078	2.5	39	
16	QUANTUM CORRECTIONS TO THE MONTE CARLO SOLUTION OF HOT-ELECTRON TRANSPORT IN SEMICONDUCTORS 1988 , 535-538			
15	Model spectral density for hot-electron quantum transport. <i>Physica Scripta</i> , 1988 , 38, 117-121	2.6	7	
14	A model of dynamical disorder in a uniform time-dependent electric field. <i>Journal of Physics A</i> , 1987 , 20, 2895-2902		4	
13	Quantum kinetic equation for electronic transport in nondegenerate semiconductors. <i>Physical Review B</i> , 1987 , 36, 6602-6608	3.3	80	
12	Time-dependent tunneling of wave-packets through heterostructures in an applied field. <i>Superlattices and Microstructures</i> , 1986 , 2, 407-413	2.8	35	
11	Transient response studied within the integral formulation of high-field quantum transport. <i>Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics</i> , 1985 , 134, 148-152		1	
10	Anomalous skin effect with general elastic boundary scattering. <i>Journal of Physics F: Metal Physics</i> , 1985 , 15, 1951-1962		5	

9	Integral formulation of transport equations: Quantum theory versus Boltzmann equation. <i>Physical Review B</i> , 1985 , 32, 2248-2253	3.3	30	
8	A model study of phonon-assisted Fano resonances. <i>Journal of Physics C: Solid State Physics</i> , 1984 , 17, 4369-4387		4	
7	Theory of high-electric-field quantum transport for electron-resonant impurity systems. <i>Physical Review B</i> , 1984 , 29, 1919-1938	3.3	125	
6	Quantum electron-phonon transport equations revisited. <i>Journal of Physics F: Metal Physics</i> , 1983 , 13, L203-L206		6	
5	Dilute resonant scatterers in a parabolic band: Density of states as a function of scattering strength. <i>Physical Review B</i> , 1983 , 28, 4628-4634	3.3	6	
4	Rigorous Formulation of High-Field Quantum Transport Applied to the Case of Electrons Scattered by Dilute Resonant Impurities. <i>Physical Review Letters</i> , 1982 , 49, 762-765	7.4	21	
3	A NON-PERTURBATIVE GREEN FUNCTION TECHNIQUE FOR CALCULATIONS OF NON-LINEAR TRANSPORT PROPERTIES. <i>Journal De Physique Colloque</i> , 1981 , 42, C7-301-C7-306		4	
2	Studies of the magnetic ordering and spin structure of K3Fe(CN)6. <i>Physical Review B</i> , 1977 , 15, 1445-14	157 .3	10	
1	Investigation of the magnetism of terbium ethylsulphate below 1 K using the Faraday effect. <i>Physical Review B</i> , 1975 , 11, 4409-4420	3.3	9	