Aloysius Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6752644/publications.pdf

Version: 2024-02-01

361045 329751 1,467 43 20 37 citations h-index g-index papers 48 48 48 1562 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Assessing the drug resistance profiles of oral probiotic lozenges. Journal of Oral Microbiology, 2022, 14, 2019992.	1.2	10
2	Editorial: Antimicrobial Resistance Along the Food Chain: Are We What We Eat?. Frontiers in Microbiology, 2022, 13, 881882.	1.5	7
3	A collective statement in support of saving pangolins. Science of the Total Environment, 2022, 824, 153666.	3.9	6
4	Abscisic acid (ABA) signaling: finding novel components off the beaten track. Plant Growth Regulation, 2022, 97, 585-592.	1.8	2
5	New Horizons in Plant Cell Signaling. International Journal of Molecular Sciences, 2022, 23, 5826.	1.8	1
6	A tandem motif-based and structural approach can identify hidden functional phosphodiesterases. Computational and Structural Biotechnology Journal, 2021, 19, 970-975.	1.9	15
7	Identification of potential nitric oxide-sensing proteins using the H-NOX motif. Molecular Plant, 2021, 14, 195-197.	3.9	11
8	Computational Identification of Functional Centers in Complex Proteins: A Step-by-Step Guide With Examples. Frontiers in Bioinformatics, 2021, 1 , .	1.0	8
9	Citrullination of Proteins as a Specific Response Mechanism in Plants. Frontiers in Plant Science, 2021, 12, 638392.	1.7	3
10	In Vitro Characterization of Guanylyl Cyclase BdPepR2 from Brachypodium distachyon Identified through a Motif-Based Approach. International Journal of Molecular Sciences, 2021, 22, 6243.	1.8	4
11	Functional Crypto-Adenylate Cyclases Operate in Complex Plant Proteins. Frontiers in Plant Science, 2021, 12, 711749.	1.7	26
12	In Search of Monocot Phosphodiesterases: Identification of a Calmodulin Stimulated Phosphodiesterase from Brachypodium distachyon. International Journal of Molecular Sciences, 2021, 22, 9654.	1.8	7
13	Nitric oxide sensing revisited. Trends in Plant Science, 2021, 26, 885-897.	4.3	10
14	Brachypodium distachyon ERECTA-like1 protein kinase is a functional guanylyl cyclase. Frontiers in Bioscience - Elite, 2021, 13, 249.	0.9	1
15	Advanced Cataloging of Lysine-63 Polyubiquitin Networks by Genomic, Interactome, and Sensor-Based Proteomic Analyses. Plant Cell, 2020, 32, 123-138.	3.1	34
16	Probiotic Supplements: Hope or Hype?. Frontiers in Microbiology, 2020, 11, 160.	1.5	31
17	The <i>Arabidopsis</i> Diacylglycerol Kinase 4 is involved in nitric oxide-dependent pollen tube guidance and fertilization. Development (Cambridge), 2020, 147, .	1.2	19
18	PlantMP: a database for moonlighting plant proteins. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	19

#	Article	IF	CITATIONS
19	Discovery of a Nitric Oxide-Responsive Protein in Arabidopsis thaliana. Molecules, 2019, 24, 2691.	1.7	14
20	IRAK3 modulates downstream innate immune signalling through its guanylate cyclase activity. Scientific Reports, 2019, 9, 15468.	1.6	30
21	New Perspectives on Plant Adenylyl Cyclases. Frontiers in Molecular Biosciences, 2019, 6, 136.	1.6	24
22	An Arabidopsis thaliana leucine-rich repeat protein harbors an adenylyl cyclase catalytic center and affects responses to pathogens. Journal of Plant Physiology, 2019, 232, 12-22.	1.6	56
23	GCPred: a web tool for guanylyl cyclase functional centre prediction from amino acid sequence. Bioinformatics, 2018, 34, 2134-2135.	1.8	24
24	Bioinformatic Analysis of Nucleotide Cyclase Functional Centers and Development of ACPred Webserver. , 2018, , .		6
25	Towards a tailored indoor horticulture: a functional genomics guided phenotypic approach. Horticulture Research, 2018, 5, 68.	2.9	26
26	The inhibition of acetylcholinesterase by a brain-targeting polylysine-ApoE peptide: biochemical and structural characterizations., 2018, 2018, 155-158.		2
27	The Arabidopsis thaliana K+-Uptake Permease 5 (AtKUP5) Contains a Functional Cytosolic Adenylate Cyclase Essential for K+ Transport. Frontiers in Plant Science, 2018, 9, 1645.	1.7	53
28	Discovery of Novel Functional Centers With Rationally Designed Amino Acid Motifs. Computational and Structural Biotechnology Journal, 2018, 16, 70-76.	1.9	31
29	An Arabidopsis Clathrin Assembly Protein with a Predicted Role in Plant Defense Can Function as an Adenylate Cyclase. Biomolecules, 2018, 8, 15.	1.8	44
30	Bioinformatic analysis of nucleotide cyclase functional centers and development of ACpred webserver. ACM SIGBioinformatics Record, 2018, 8, 1-8.	0.3	0
31	The brassinosteroid receptor <scp>BRI</scp> 1 can generate <scp>cGMP</scp> enabling <scp>cGMP</scp> â€dependent downstream signaling. Plant Journal, 2017, 91, 590-600.	2.8	44
32	Direct Modulation of the Guard Cell Outward-Rectifying Potassium Channel (GORK) by AbscisicÂAcid. Molecular Plant, 2017, 10, 1469-1472.	3.9	25
33	Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic Resistance. Frontiers in Microbiology, 2017, 8, 908.	1.5	125
34	A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization. Frontiers in Physiology, 2016, 7, 300.	1.3	44
35	Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light. Scientific Reports, 2016, 6, 33885.	1.6	31
36	Conserved Functional Motifs and Homology Modeling to Predict Hidden Moonlighting Functional Sites. Frontiers in Bioengineering and Biotechnology, 2015, 3, 82.	2.0	57

ALOYSIUS WONG

#	Article	IF	CITATIONS
37	The <i>Arabidopsis thaliana</i> K ⁺ â€uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre. FEBS Letters, 2015, 589, 3848-3852.	1.3	54
38	Cyclic Nucleotide Monophosphates in Plants and Plant Signaling. Handbook of Experimental Pharmacology, 2015, 238, 87-103.	0.9	28
39	Nitric Oxide: A Multitasked Signaling Gas in Plants. Molecular Plant, 2015, 8, 506-520.	3.9	366
40	Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage. International Journal of Molecular Sciences, 2015, 16, 857-870.	1.8	19
41	Detection of antibiotic resistance in probiotics of dietary supplements. Nutrition Journal, 2015, 14, 95.	1.5	88
42	The Arabidopsis thaliana proteome harbors undiscovered multi-domain molecules with functional guanylyl cyclase catalytic centers. Cell Communication and Signaling, 2013, 11, 48.	2.7	42
43	Computational Identification of Candidate Nucleotide Cyclases in Higher Plants. Methods in Molecular Biology, 2013, 1016, 195-205.	0.4	19