Yonghua Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/67522/publications.pdf

Version: 2024-02-01

			36271	5	8549
ı	135	7,506	51		82
ı	papers	citations	h-index		g-index
ı					
	137	137	137		6820
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chemical Society Reviews, 2018, 47, 2873-2920.	18.7	579
2	Functional DNA Regulated CRISPR-Cas12a Sensors for Point-of-Care Diagnostics of Non-Nucleic-Acid Targets. Journal of the American Chemical Society, 2020, 142, 207-213.	6.6	430
3	Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosensors and Bioelectronics, 2016, 75, 166-180.	5. 3	394
4	Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials, 2011, 32, 9758-9765.	5.7	320
5	Immunochromatographic Assay for Ultrasensitive Detection of Aflatoxin B ₁ in Maize by Highly Luminescent Quantum Dot Beads. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14215-14222.	4.0	230
6	Nanotechnology-Enhanced No-Wash Biosensors for <i>in Vitro</i> Diagnostics of Cancer. ACS Nano, 2017, 11, 5238-5292.	7.3	208
7	Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. Journal of Dairy Science, 2014, 97, 7334-7343.	1.4	155
8	Quantum dot nanobead-based multiplexed immunochromatographic assay for simultaneous detection of aflatoxin B1 and zearalenone. Analytica Chimica Acta, 2018, 1025, 163-171.	2.6	127
9	Detection of aflatoxin B1 with immunochromatographic test strips: Enhanced signal sensitivity using gold nanoflowers. Talanta, 2015, 142, 206-212.	2.9	109
10	Magnetic Quantum Dot Nanobead-Based Fluorescent Immunochromatographic Assay for the Highly Sensitive Detection of Aflatoxin B ₁ in Dark Soy Sauce. Analytical Chemistry, 2019, 91, 4727-4734.	3.2	108
11	Multicolor quantum dot nanobeads for simultaneous multiplex immunochromatographic detection of mycotoxins in maize. Sensors and Actuators B: Chemical, 2019, 291, 411-417.	4.0	107
12	Fluorescent Ru(phen) ₃ ²⁺ -Doped Silica Nanoparticles-Based ICTS Sensor for Quantitative Detection of Enrofloxacin Residues in Chicken Meat. Analytical Chemistry, 2013, 85, 5120-5128.	3.2	103
13	A novel method based on fluorescent magnetic nanobeads for rapid detection of Escherichia coli O157:H7. Food Chemistry, 2019, 276, 333-341.	4.2	103
14	Point-of-care COVID-19 diagnostics powered by lateral flow assay. TrAC - Trends in Analytical Chemistry, 2021, 145, 116452.	5.8	103
15	Size-Dependent Immunochromatographic Assay with Quantum Dot Nanobeads for Sensitive and Quantitative Detection of Ochratoxin A in Corn. Analytical Chemistry, 2017, 89, 7062-7068.	3.2	102
16	Quantum-DoT submicrobead-based immunochromatographic assay for quantitative and sensitive detection of zearalenone. Talanta, 2015, 132, 126-131.	2.9	98
17	A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode. Biosensors and Bioelectronics, 2015, 74, 504-511.	5.3	96
18	Emerging strategies to enhance the sensitivity of competitive ELISA for detection of chemical contaminants in food samples. TrAC - Trends in Analytical Chemistry, 2020, 126, 115861.	5.8	94

#	Article	IF	CITATIONS
19	Multifunctionalized reduced graphene oxide-doped polypyrrole/pyrrolepropylic acid nanocomposite impedimetric immunosensor to ultra-sensitively detect small molecular aflatoxin B1. Biosensors and Bioelectronics, 2015, 63, 185-189.	5. 3	93
20	A homogeneous immunosensor for AFB1 detection based on FRET between different-sized quantum dots. Biosensors and Bioelectronics, 2014, 56, 144-150.	5.3	91
21	Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics. Biosensors and Bioelectronics, 2016, 86, 770-776.	5. 3	90
22	Gold nanoparticle-based dynamic light scattering immunoassay for ultrasensitive detection of Listeria monocytogenes in lettuces. Biosensors and Bioelectronics, 2015, 66, 184-190.	5. 3	84
23	Evaluation of probiotic properties of Lactobacillus plantarum WLPL04 isolated from human breast milk. Journal of Dairy Science, 2016, 99, 1736-1746.	1.4	84
24	Emerging design strategies for constructing multiplex lateral flow test strip sensors. Biosensors and Bioelectronics, 2020, 157, 112168.	5. 3	84
25	Plasmonic ELISA based on enzyme-assisted etching of Au nanorods for the highly sensitive detection of aflatoxin B1 in corn samples. Sensors and Actuators B: Chemical, 2018, 267, 320-327.	4.0	83
26	Immunochromatographic assay for quantitative and sensitive detection of hepatitis B virus surface antigen using highly luminescent quantum dot-beads. Talanta, 2015, 142, 145-149.	2.9	81
27	Development of an immunochromatographic assay for rapid and quantitative detection of clenbuterol in swine urine. Food Control, 2013, 34, 725-732.	2.8	79
28	Emerging strategies to develop sensitive AuNP-based ICTS nanosensors. TrAC - Trends in Analytical Chemistry, 2019, 112, 147-160.	5.8	77
29	Development of a colloidal gold strip for rapid detection of ochratoxin A with mimotope peptide. Food Control, 2009, 20, 791-795.	2.8	72
30	"Three-in-one―Nanohybrids as Synergistic Nanoquenchers to Enhance No-Wash Fluorescence Biosensors for Ratiometric Detection of Cancer Biomarkers. Theranostics, 2018, 8, 3461-3473.	4.6	72
31	Dramatically Enhanced Immunochromatographic Assay Using Cascade Signal Amplification for Ultrasensitive Detection of <i>Escherichia coli</i> O157:H7 in Milk. Journal of Agricultural and Food Chemistry, 2020, 68, 1118-1125.	2.4	69
32	"Three-in-One―Multifunctional Nanohybrids with Colorimetric Magnetic Catalytic Activities to Enhance Immunochromatographic Diagnosis. ACS Nano, 2022, 16, 3351-3361.	7. 3	69
33	Ultrasensitive fluorescence immunoassay for detection of ochratoxin A using catalase-mediated fluorescence quenching of CdTe QDs. Nanoscale, 2016, 8, 9390-9397.	2.8	66
34	Dual gold nanoparticle lateflow immunoassay for sensitive detection of Escherichia coli O157:H7. Analytica Chimica Acta, 2015, 876, 71-76.	2.6	64
35	A modified lateral flow immunoassay for the detection of trace aflatoxin M1 based on immunomagnetic nanobeads with different antibody concentrations. Food Control, 2015, 51, 218-224.	2.8	64
36	Engineered gold nanoparticles as multicolor labels for simultaneous multi-mycotoxin detection on the immunochromatographic test strip nanosensor. Sensors and Actuators B: Chemical, 2020, 316, 128107.	4.0	63

3

#	Article	IF	Citations
37	Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay. Theranostics, 2022, 12, 574-602.	4.6	63
38	Novel fluorescent ELISA for the sensitive detection of zearalenone based on H2O2-sensitive quantum dots for signal transduction. Talanta, 2016, 158, 51-56.	2.9	62
39	Phage-free peptide ELISA for ochratoxin A detection based on biotinylated mimotope as a competing antigen. Talanta, 2016, 146, 394-400.	2.9	62
40	Nanospherical Brush as Catalase Container for Enhancing the Detection Sensitivity of Competitive Plasmonic ELISA. Analytical Chemistry, 2016, 88, 1951-1958.	3.2	61
41	Effect of different-sized gold nanoflowers on the detection performance of immunochromatographic assay for human chorionic gonadotropin detection. Talanta, 2019, 194, 604-610.	2.9	61
42	Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies. Sensors and Actuators B: Chemical, 2021, 343, 130139.	4.0	61
43	Multi-branched gold nanoflower-embedded iron porphyrin for colorimetric immunosensor. Biosensors and Bioelectronics, 2018, 102, 9-16.	5.3	60
44	Self-assembled colloidal gold superparticles to enhance the sensitivity of lateral flow immunoassays with sandwich format. Theranostics, 2020, 10, 3737-3748.	4.6	58
45	Ultrahigh-sensitivity label-free optical fiber biosensor based on a tapered singlemode- no core-singlemode coupler for Staphylococcus aureus detection. Sensors and Actuators B: Chemical, 2020, 320, 128283.	4.0	58
46	Effect of different-sized spherical gold nanoparticles grown layer by layer on the sensitivity of an immunochromatographic assay. RSC Advances, 2016, 6, 26178-26185.	1.7	57
47	A novel fluorescence immunoassay for the sensitive detection of Escherichia coli O157:H7 in milk based on catalase-mediated fluorescence quenching of CdTe quantum dots. Analytica Chimica Acta, 2016, 947, 50-57.	2.6	56
48	Biotin–Streptavidin System-Mediated Ratiometric Multiplex Immunochromatographic Assay for Simultaneous and Accurate Quantification of Three Mycotoxins. Journal of Agricultural and Food Chemistry, 2019, 67, 9022-9031.	2.4	56
49	Fluorescence ELISA for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs. Analytica Chimica Acta, 2016, 936, 195-201.	2.6	55
50	Silver Nanoparticle-Based Fluorescence-Quenching Lateral Flow Immunoassay for Sensitive Detection of Ochratoxin A in Grape Juice and Wine. Toxins, 2017, 9, 83.	1.5	54
51	Recent advances in colorimetry/fluorimetry-based dual-modal sensing technologies. Biosensors and Bioelectronics, 2021, 190, 113386.	5.3	53
52	Folic Acid Targeting for Efficient Isolation and Detection of Ovarian Cancer CTCs from Human Whole Blood Based on Two-Step Binding Strategy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 14055-14062.	4.0	52
53	Application and development of superparamagnetic nanoparticles in sample pretreatment and immunochromatographic assay. TrAC - Trends in Analytical Chemistry, 2019, 114, 151-170.	5.8	51
54	Folic acid conjugated magnetic iron oxide nanoparticles for nondestructive separation and detection of ovarian cancer cells from whole blood. Biomaterials Science, 2016, 4, 159-166.	2.6	50

#	Article	IF	CITATIONS
55	Biotin-exposure-based immunomagnetic separation coupled with nucleic acid lateral flow biosensor for visibly detecting viable Listeria monocytogenes. Analytica Chimica Acta, 2018, 1017, 48-56.	2.6	50
56	Comparison of 4 label-based immunochromatographic assays for the detection of Escherichia coli O157:H7 in milk. Journal of Dairy Science, 2017, 100, 5176-5187.	1.4	49
57	Supramolecular Recognitionâ€Mediated Layerâ€byâ€Layer Selfâ€Assembled Gold Nanoparticles for Customized Sensitivity in Paperâ€Based Strip Nanobiosensors. Small, 2019, 15, e1903861.	5.2	47
58	Gold nanorods etching-based plasmonic immunoassay for qualitative and quantitative detection of aflatoxin M1 in milk. Food Chemistry, 2020, 329, 127160.	4.2	44
59	A colorimetric immunoassay based on glucose oxidase-induced AuNP aggregation for the detection of fumonisin B1. Talanta, 2018, 186, 29-35.	2.9	42
60	Plasmonic ELISA for naked-eye detection of ochratoxin A based on the tyramine-H2O2 amplification system. Sensors and Actuators B: Chemical, 2018, 259, 162-169.	4.0	42
61	Identification and characterization of species-specific nanobodies for the detection of Listeria monocytogenes in milk. Analytical Biochemistry, 2016, 493, 1-7.	1.1	41
62	Colorimetric ELISA based on glucose oxidase-regulated the color of acid–base indicator for sensitive detection of aflatoxin B1 in corn samples. Food Control, 2017, 78, 317-323.	2.8	41
63	Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science and Technology, 2021, 118, 658-678.	7.8	41
64	A portable electrochemical immunosensor for rapid detection of trace aflatoxin B $<$ sub $>$ 1 $<$ /sub $>$ in rice. Analytical Methods, 2016, 8, 548-553.	1.3	39
65	Two-step large-volume magnetic separation combined with PCR assay for sensitive detection of Listeria monocytogenes in pasteurized milk. Journal of Dairy Science, 2017, 100, 7883-7890.	1.4	39
66	AlEgens: An emerging fluorescent sensing tool to aid food safety and quality control. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2297-2329.	5.9	39
67	Urease-induced metallization of gold nanorods for the sensitive detection of Salmonella enterica Choleraesuis through colorimetric ELISA. Journal of Dairy Science, 2019, 102, 1997-2007.	1.4	37
68	A novel magneto-gold nanohybrid-enhanced lateral flow immunoassay for ultrasensitive and rapid detection of ochratoxin A in grape juice. Food Chemistry, 2021, 336, 127710.	4.2	37
69	Effect of the tip length of multi-branched AuNFs on the detection performance of immunochromatographic assays. Analytical Methods, 2016, 8, 3316-3324.	1.3	36
70	Direct competitive ELISA enhanced by dynamic light scattering for the ultrasensitive detection of aflatoxin B1 in corn samples. Food Chemistry, 2021, 342, 128327.	4.2	36
71	Inner-filter effect based fluorescence-quenching immunochromotographic assay for sensitive detection of aflatoxin B1 in soybean sauce. Food Control, 2018, 94, 71-76.	2.8	35
72	Sulfonated polystyrene magnetic nanobeads coupled with immunochromatographic strip for clenbuterol determination in pork muscle. Talanta, 2014, 129, 431-437.	2.9	34

#	Article	IF	Citations
73	Ultrasensitive direct competitive FLISA using highly luminescent quantum dot beads for tuning affinity of competing antigens to antibodies. Analytica Chimica Acta, 2017, 972, 94-101.	2.6	34
74	Affordable and simple method for separating and detecting ovarian cancer circulating tumor cells using BSA coated magnetic nanoprobes modified with folic acid. Sensors and Actuators B: Chemical, 2018, 262, 611-618.	4.0	33
75	Core–Shellâ€Heterostructured Magnetic–Plasmonic Nanoassemblies with Highly Retained Magnetic–Plasmonic Activities for Ultrasensitive Bioanalysis in Complex Matrix. Advanced Science, 2020, 7, 1902433.	5.6	31
76	Sensitive detection of Escherichia coli O157:H7 based on cascade signal amplification in ELISA. Journal of Dairy Science, 2016, 99, 7025-7032.	1.4	29
77	Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B. Talanta, 2018, 181, 258-264.	2.9	29
78	Controlled copper in situ growth-amplified lateral flow sensors for sensitive, reliable, and field-deployable infectious disease diagnostics. Biosensors and Bioelectronics, 2021, 171, 112753.	5.3	29
79	Fluorescence ELISA based on CAT-regulated fluorescence quenching of CdTe QDs for sensitive detection of FB ₁ . Analytical Methods, 2018, 10, 5797-5802.	1.3	28
80	Gold Nanoflower-Enhanced Dynamic Light Scattering Immunosensor for the Ultrasensitive No-Wash Detection of $\langle i \rangle$ Escherichia coli $\langle i \rangle$ O157:H7 in Milk. Journal of Agricultural and Food Chemistry, 2019, 67, 9104-9111.	2.4	28
81	Citrinin detection using phage-displayed anti-idiotypic single-domain antibody for antigen mimicry. Food Chemistry, 2015, 177, 97-101.	4.2	26
82	Controllable self-assembled plasmonic vesicle-based three-dimensional SERS platform for picomolar detection of hydrophobic contaminants. Nanoscale, 2018, 10, 13202-13211.	2.8	25
83	Invited review: Advancements in lateral flow immunoassays for screening hazardous substances in milk and milk powder. Journal of Dairy Science, 2019, 102, 1887-1900.	1.4	24
84	Quantitative detection of \hat{l}^2 (sub>2-adrenergic agonists using fluorescence quenching by immunochromatographic assay. Analytical Methods, 2016, 8, 627-631.	1.3	21
85	Dual-mode fluorescent and colorimetric immunoassay for the ultrasensitive detection of alpha-fetoprotein in serum samples. Analytica Chimica Acta, 2018, 1038, 112-119.	2.6	21
86	Quantum bead-based fluorescence-linked immunosorbent assay for ultrasensitive detection of aflatoxin M1 in pasteurized milk, yogurt, and milk powder. Journal of Dairy Science, 2019, 102, 3985-3993.	1.4	21
87	Gold nanoparticle–decorated metal organic frameworks on immunochromatographic assay for human chorionic gonadotropin detection. Mikrochimica Acta, 2020, 187, 640.	2.5	21
88	Chemical modification of M13 bacteriophage as nanozyme container for dramatically enhanced sensitivity of colorimetric immunosensor. Sensors and Actuators B: Chemical, 2021, 346, 130368.	4.0	21
89	Recent advances in enzyme-enhanced immunosensors. Biotechnology Advances, 2021, 53, 107867.	6.0	21
90	Hydrazide-assisted directional antibody conjugation of gold nanoparticles to enhance immunochromatographic assay. Analytica Chimica Acta, 2021, 1168, 338623.	2.6	20

#	Article	IF	Citations
91	Comparison of immunochromatographic assays based on fluorescent microsphere and quantum-dot submicrobead for quantitative detection of aflatoxin M1 in milk. Journal of Dairy Science, 2017, 100, 2501-2511.	1.4	19
92	Plasmonic ELISA based on DNA-directed gold nanoparticle growth for Cronobacter detection in powdered infant formula samples. Journal of Dairy Science, 2019, 102, 10877-10886.	1.4	19
93	Monoclonal antibody-based enzyme-linked immunosorbent assay for detection of total malachite green and crystal violet residues in fishery products. International Journal of Environmental Analytical Chemistry, 2013, 93, 959-969.	1.8	18
94	Natural enzyme-free colorimetric immunoassay for human chorionic gonadotropin detection based on the Ag+-triggered catalytic activity of cetyltrimethylammonium bromide-coated gold nanoparticles. Sensors and Actuators B: Chemical, 2020, 305, 127439.	4.0	18
95	Fluorescence immunoassay based on the enzyme cleaving ss-DNA to regulate the synthesis of histone-ds-poly(AT) templated copper nanoparticles. Nanoscale, 2018, 10, 19890-19897.	2.8	17
96	Integrated magneto-fluorescence nanobeads for ultrasensitive glycoprotein detection using antibody coupled boronate-affinity recognition. Chemical Communications, 2019, 55, 10312-10315.	2.2	17
97	A Gold Growth-Based Plasmonic ELISA for the Sensitive Detection of Fumonisin B1 in Maize. Toxins, 2019, 11, 323.	1.5	17
98	Comparison of three sample addition methods in competitive and sandwich colloidal gold immunochromatographic assay. Analytica Chimica Acta, 2020, 1094, 90-98.	2.6	16
99	Magnetic beads carrying poly(acrylic acid) brushes as "nanobody containers―for immunoaffinity purification of aflatoxin B1 from corn samples. RSC Advances, 2015, 5, 77380-77387.	1.7	15
100	Quantum Dot Submicrobead–Based Immunochromatographic Assay for the Determination of Parathion in Agricultural Products. Food Analytical Methods, 2020, 13, 1736-1745.	1.3	15
101	Hydrazide mediated oriented coupling of antibodies on quantum dot beads for enhancing detection performance of immunochromatographic assay. Talanta, 2021, 223, 121723.	2.9	15
102	Solution-processed multifunctional transparent conductive films based on long silver nanowires/polyimide structure with highly thermostable and antibacterial properties. RSC Advances, 2017, 7, 28670-28676.	1.7	15
103	Integrated gold superparticles into lateral flow immunoassays for the rapid and sensitive detection of Escherichia coli O157:H7 in milk. Journal of Dairy Science, 2020, 103, 6940-6949.	1.4	15
104	A Universal Boronateâ€Affinity Crosslinkingâ€Amplified Dynamic Light Scattering Immunoassay for Pointâ€of are Glycoprotein Detection. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
105	Gold Nanobeads with Enhanced Absorbance for Improved Sensitivity in Competitive Lateral Flow Immunoassays. Foods, 2021, 10, 1488.	1.9	13
106	Colorimetric ELISA with an acid–base indicator for sensitive detection of ochratoxin A in corn samples. Analytical Methods, 2018, 10, 30-36.	1.3	12
107	Dynamic light scattering immunosensor based on metal-organic framework mediated gold growth strategy for the ultra-sensitive detection of alpha-fetoprotein. Sensors and Actuators B: Chemical, 2021, 341, 130030.	4.0	12
108	Eco-Friendly Fluorescent ELISA Based on Bifunctional Phage for Ultrasensitive Detection of Ochratoxin A in Corn. Foods, 2021, 10, 2429.	1.9	12

7

#	Article	lF	Citations
109	Avoiding the self-nucleation interference: a pH-regulated gold <i>in situ</i> enable ultrasensitive immunochromatographic diagnostics. Theranostics, 2022, 12, 2801-2810.	4.6	12
110	Quantum dot nanobead-based immunochromatographic assay for the quantitative detection of the procalcitonin antigen in serum samples. Microchemical Journal, 2020, 159, 105533.	2.3	11
111	Quantum dot bead-based immunochromatographic assay for the quantitative detection of triazophos. Food and Agricultural Immunology, 2019, 30, 955-967.	0.7	10
112	Integrated nanoparticle size with membrane porosity for improved analytical performance in sandwich immunochromatographic assay. Analytica Chimica Acta, 2021, 1141, 136-143.	2.6	10
113	A self-luminous bifunctional bacteria directed fluorescent immunosensor for the simultaneous detection and quantification of three pathogens in milk. Sensors and Actuators B: Chemical, 2021, 338, 129757.	4.0	10
114	I2/Iâ^²-mediated fluorescence quenching of an Ag+-doped gold nanocluster-based immunoassay for sensitive detection of Escherichia coli O157:H7 in milk. Journal of Dairy Science, 2022, 105, 2922-2930.	1.4	10
115	Low-sample-consumption and ultrasensitive detection of procalcitonin by boronate affinity recognition-enhanced dynamic light scattering biosensor. Biosensors and Bioelectronics, 2022, 200, 113914.	5. 3	9
116	Dramatically Enhancing the Sensitivity of Immunoassay for Ochratoxin A Detection by Cascade-Amplifying Enzyme Loading. Toxins, 2021, 13, 781.	1.5	8
117	Ultrasensitive dynamic light scattering immunosensing platform for NT-proBNP detection using boronate affinity amplification. Journal of Nanobiotechnology, 2022, 20, 21.	4.2	8
118	A novel method based on Ag–Au nanorings with tunable plasmonic properties for the sensitive detection of amantadine. Journal of Hazardous Materials, 2022, 431, 128498.	6.5	8
119	Fluorescence immunoassay through histone-ds-poly(AT)-templated copper nanoparticles as signal transductors for the sensitive detection of Salmonella choleraesuis in milk. Journal of Dairy Science, 2019, 102, 6047-6055.	1.4	7
120	Boronate affinity-assisted oriented antibody conjugation on quantum dot nanobeads for improved detection performance in lateral flow immunoassay. Microchemical Journal, 2021, 171, 106822.	2.3	7
121	Ratiometric Monitoring of Biogenic Amines by a Simple Ammonia-Response Aiegen. Foods, 2022, 11, 932.	1.9	6
122	A fluorescence immunochromatographic assay for rapid and sensitive detection of human prealbumin in serum. Analytical Methods, 2015, 7, 8683-8688.	1.3	5
123	An amphiphilic-ligand-modified gold nanoflower probe for enhancing the stability of lateral flow immunoassays in dried distillers grains. RSC Advances, 2019, 9, 36670-36679.	1.7	5
124	Covalent organic framework-gold nanoparticle heterostructures amplified dynamic light scattering immunosensor for ultrasensitive detection of NT-proBNP in whole blood. Sensors and Actuators B: Chemical, 2022, 364, 131872.	4.0	5
125	Quantum dot bead-based competitive immunochromatographic assay for enterotoxin aureus A detection in pasteurized milk. Journal of Dairy Science, 2022, 105, 4938-4945.	1.4	5
126	Highly sensitive detection of Hg2+ using covalent linking single-strand DNA to the surface of graphene oxide with co-anchor strand. Analytical Methods, 2019, 11, 4416-4420.	1.3	4

#	Article	IF	CITATIONS
127	Hyperbranched Gold Plasmonic Blackbodies Enhanced Immunochromatographic Test Strip for the Sensitive Detection of Aflatoxin B1 in Maize Sample. Food Analytical Methods, 2021, 14, 2017-2025.	1.3	4
128	Light scattering intensity as signal transducer to enhance the performance of immunoassay for Cronobacter detection in powdered infant formula. Sensors and Actuators B: Chemical, 2021, 344, 130312.	4.0	4
129	Two-step aggregation of gold nanoparticles based on charge neutralization for detection of melamine by colorimetric and surface-enhanced Raman spectroscopy platform. Journal of Dairy Science, 2022, 105, 7298-7307.	1.4	2
130	Quantum dots-based lateral flow strip assay for rapid detection of clenbuterol., 2011,,.		1
131	Quantum dots-based system for the detection of bacteria in drinking water. , 2012, , .		1
132	Magnetic–Plasmonic Nanoassemblies: Core–Shellâ€Heterostructured Magnetic–Plasmonic Nanoassemblies with Highly Retained Magnetic–Plasmonic Activities for Ultrasensitive Bioanalysis in Complex Matrix (Adv. Sci. 2/2020). Advanced Science, 2020, 7, 2070011.	5 . 6	1
133	Amphiphilic ligand modified gold nanocarriers to amplify lanthanide loading for ultrasensitive DELFIA detection of <i>Cronobacter </i> . Analyst, The, 2020, 145, 249-256.	1.7	0
134	A Universal Boronateâ€Affinity Crosslinkingâ€Amplified Dynamic Light Scattering Immunoassay for Pointâ€ofâ€Care Glycoprotein Detection. Angewandte Chemie, 2022, 134, .	1.6	0
135	Using a quantum dot bead-based lateral flow immunoassay to broadly detect the adulteration of PDE-5 inhibitors in functional foods. Analytical Methods, 0, , .	1.3	O