Edgar Peiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6752044/publications.pdf Version: 2024-02-01

FOCAD DEITED

#	Article	IF	CITATIONS
1	Overexpression of <i>METAL TOLERANCE PROTEIN8</i> reveals new aspects of metal transport in <i>Arabidopsis thaliana</i> seeds. Plant Biology, 2022, 24, 23-29.	3.8	13
2	Thresholds of target phosphorus fertility classes in European fertilizer recommendations in relation to critical soil test phosphorus values derived from the analysis of 55 European long-term field experiments. Agriculture, Ecosystems and Environment, 2022, 332, 107926.	5.3	21
3	Transport, functions, and interaction of calcium and manganese in plant organellar compartments. Plant Physiology, 2021, 187, 1940-1972.	4.8	47
4	ANNEXIN1 mediates calciumâ€dependent systemic defense in Arabidopsis plants upon herbivory and wounding. New Phytologist, 2021, 231, 243-254.	7.3	25
5	A path toward concurrent biofortification and cadmium mitigation in plantâ€based foods. New Phytologist, 2021, 232, 17-24.	7.3	9
6	Manganese in Plants: From Acquisition to Subcellular Allocation. Frontiers in Plant Science, 2020, 11, 300.	3.6	367
7	Poly(ADP-Ribose) Polymerases in Plants and Their Human Counterparts: Parallels and Peculiarities. International Journal of Molecular Sciences, 2019, 20, 1638.	4.1	32
8	"Wild barley serves as a source for biofortification of barley grains― Plant Science, 2019, 283, 83-94.	3.6	33
9	Chloroplastâ€localized BICAT proteins shape stromal calcium signals and are required for efficient photosynthesis. New Phytologist, 2019, 221, 866-880.	7.3	47
10	Calcium Transport Proteins in Fungi: The Phylogenetic Diversity of Their Relevance for Growth, Virulence, and Stress Resistance. Frontiers in Microbiology, 2019, 10, 3100.	3.5	35
11	The Tomato Mitogen-Activated Protein Kinase SIMPK1 Is as a Negative Regulator of the High-Temperature Stress Response. Plant Physiology, 2018, 177, 633-651.	4.8	80
12	Trace metal metabolism in plants. Journal of Experimental Botany, 2018, 69, 909-954.	4.8	282
13	Root-Associated Bacterial and Fungal Community Profiles of <i>Arabidopsis thaliana</i> Are Robust Across Contrasting Soil P Levels. Phytobiomes Journal, 2018, 2, 24-34.	2.7	37
14	Re-evaluation of the yield response to phosphorus fertilization based on meta-analyses of long-term field experiments. Ambio, 2018, 47, 50-61.	5.5	42
15	Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 6/2018. Journal of Plant Nutrition and Soil Science, 2018, 181, 966-967.	1.9	Ο
16	ScGAI is a key regulator of culm development in sugarcane. Journal of Experimental Botany, 2018, 69, 3823-3837.	4.8	46
17	The equivalence of the Calcium-Acetate-Lactate and Double-Lactate extraction methods to assess soil phosphorus fertility. Journal of Plant Nutrition and Soil Science, 2018, 181, 795-801.	1.9	7
18	A yeast growth assay to characterize plant poly(ADP-ribose) polymerase (PARP) proteins and inhibitors. Analytical Biochemistry, 2017, 527, 20-23.	2.4	3

Edgar Peiter

#	Article	IF	CITATIONS
19	Metal Tolerance Protein 8 Mediates Manganese Homeostasis and Iron Reallocation during Seed Development and Germination. Plant Physiology, 2017, 174, 1633-1647.	4.8	99
20	Quantity and distribution of arbuscular mycorrhizal fungal storage organs within dead roots. Mycorrhiza, 2017, 27, 201-210.	2.8	23
21	No Silver Bullet – Canonical Poly(ADP-Ribose) Polymerases (PARPs) Are No Universal Factors of Abiotic and Biotic Stress Resistance of Arabidopsis thaliana. Frontiers in Plant Science, 2017, 08, 59.	3.6	37
22	Yield formation of five crop species under water shortage and differential potassium supply. Journal of Plant Nutrition and Soil Science, 2016, 179, 234-243.	1.9	17
23	The plasma membrane protein Rch1 is a negative regulator of cytosolic calcium homeostasis and positively regulated by the calcium/calcineurin signaling pathway in budding yeast. European Journal of Cell Biology, 2016, 95, 164-174.	3.6	34
24	Cytosolic free calcium dynamics as related to hyphal and colony growth in the filamentous fungal pathogen Colletotrichum graminicola. Fungal Genetics and Biology, 2016, 91, 55-65.	2.1	9
25	The Ever-Closer Union of Signals: Propagating Waves of Calcium and ROS Are Inextricably Linked. Plant Physiology, 2016, 172, 3-4.	4.8	11
26	The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis. Plant Physiology, 2016, 170, 1030-1045.	4.8	166
27	The Transient Receptor Potential (TRP) Channel Family in Colletotrichum graminicola: A Molecular and Physiological Analysis. PLoS ONE, 2016, 11, e0158561.	2.5	11
28	Systemic cytosolic Ca ²⁺ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytologist, 2015, 207, 996-1004.	7.3	158
29	The nuclear protein Poly(<scp>ADP</scp> â€ribose) polymerase 3 (At <scp>PARP</scp> 3) is required for seed storability in <i>Arabidopsis thaliana</i> . Plant Biology, 2014, 16, 1058-1064.	3.8	39
30	Potassium in agriculture – Status and perspectives. Journal of Plant Physiology, 2014, 171, 656-669.	3.5	725
31	Cytosolic calcium signals elicited by the pathogenâ€associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature. New Phytologist, 2014, 204, 873-881.	7.3	80
32	A modular plasmid system for protein co-localization and bimolecular fluorescence complementation in filamentous fungi. Current Genetics, 2014, 60, 343-350.	1.7	6
33	Membrane-assisted culture of fungal mycelium on agar plates for RNA extraction and pharmacological analyses. Analytical Biochemistry, 2014, 453, 58-60.	2.4	9
34	Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6859-6864.	7.1	129
35	The plant vacuole: Emitter and receiver of calcium signals. Cell Calcium, 2011, 50, 120-128.	2.4	121
36	Getting the most out of publicly available Tâ€ĐNA insertion lines. Plant Journal, 2008, 56, 665-677.	5.7	56

Edgar Peiter

#	Article	IF	CITATIONS
37	The <i>Medicago truncatula</i> DMI1 Protein Modulates Cytosolic Calcium Signaling. Plant Physiology, 2007, 145, 192-203.	4.8	99
38	A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8532-8537.	7.1	250
39	The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature, 2005, 434, 404-408.	27.8	490
40	TheSaccharomyces cerevisiaeCa2+channel Cch1pMid1p is essential for tolerance to cold stress and iron toxicity. FEBS Letters, 2005, 579, 5697-5703.	2.8	65
41	Amino acid export from infected cells of Vicia faba root nodules: Evidence for an apoplastic step in the infected zone. Physiologia Plantarum, 2004, 122, 107-114.	5.2	13
42	A novel procedure for gentle isolation and separation of intact infected and uninfected protoplasts from the central tissue of Vicia faba L. root nodules. Plant, Cell and Environment, 2003, 26, 1117-1126.	5.7	11
43	Sugar uptake and proton release by protoplasts from the infected zone of Vicia faba L. nodules: evidence against apoplastic sugar supply of infected cells. Journal of Experimental Botany, 2003, 54, 1691-1700.	4.8	25
44	Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis. Planta, 2002, 215, 14-25.	3.2	44
45	Lime-induced growth depression inLupinus species: Are soil pH and bicarbonate involved?. Journal of Plant Nutrition and Soil Science, 2001, 164, 165-172.	1.9	26
46	Functional structure of the indeterminate Vicia faba L. root nodule: implications for metabolite transport. Journal of Plant Physiology, 2000, 157, 335-343.	3.5	31
47	Are mineral nutrients a critical factor for lime intolerance of lupins?. Journal of Plant Nutrition, 2000, 23, 617-635.	1.9	11