Giuseppe Testa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6751945/publications.pdf

Version: 2024-02-01

101 papers	6,826 citations	94269 37 h-index	6	78 g-index
115 all docs	115 docs citations	115 times ranked		10930 citing authors

#	Article	IF	CITATIONS
1	The Histone H3 Lysine-27 Demethylase Jmjd3 Links Inflammation to Inhibition of Polycomb-Mediated Gene Silencing. Cell, 2007, 130, 1083-1094.	13.5	843
2	Rapid modification of bacterial artificial chromosomes by ET- recombination. Nucleic Acids Research, 1999, 27, 1555-1557.	6.5	475
3	Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO Journal, 2009, 28, 3341-3352.	3.5	383
4	DNA cloning by homologous recombination in Escherichia coli. Nature Biotechnology, 2000, 18, 1314-1317.	9.4	376
5	Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nature Biotechnology, 2019, 37, 314-322.	9.4	254
6	Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. Journal of Clinical Investigation, 2013, 123, 5009-5022.	3.9	215
7	The Histone H3 Lysine 27-Specific Demethylase Jmjd3 Is Required for Neural Commitment. PLoS ONE, 2008, 3, e3034.	1.1	188
8	A reliable lacZ expression reporter cassette for multipurpose, knockout-first alleles. Genesis, 2004, 38, 151-158.	0.8	186
9	Mast cell-specific Cre/loxP-mediated recombination inÂvivo. Transgenic Research, 2008, 17, 307-315.	1.3	175
10	TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics. Nature Methods, 2016, 13, 777-783.	9.0	173
11	Scrutinizing the epigenetics revolution. BioSocieties, 2014, 9, 431-456.	0.8	168
12	Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environment International, 2020, 134, 105267.	4.8	165
13	Genomic instability in induced stem cells. Cell Death and Differentiation, 2011, 18, 745-753.	5.0	138
14	Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Reports, 2000, 1, 239-243.	2.0	131
15	From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Science, 2022, 375, eabe8244.	6.0	129
16	Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nature Biotechnology, 2003, 21, 443-447.	9.4	126
17	YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome Featuring Transcriptional and Chromatin Dysfunction. American Journal of Human Genetics, 2017, 100, 907-925.	2.6	125
18	Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Molecular Autism, 2020, 11, 69.	2.6	125

#	Article	IF	CITATIONS
19	Activation of Neuronal Gene Expression by the JMJD3 Demethylase Is Required for Postnatal and Adult Brain Neurogenesis. Cell Reports, 2014, 8, 1290-1299.	2.9	116
20	Systematic proteome and proteostasis profiling in human Trisomy 21 fibroblast cells. Nature Communications, 2017, 8, 1212.	5.8	112
21	7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages. Nature Genetics, 2015, 47, 132-141.	9.4	108
22	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	13.7	108
23	The H3K27 Demethylase JMJD3 Is Required for Maintenance of the Embryonic Respiratory Neuronal Network, Neonatal Breathing, and Survival. Cell Reports, 2012, 2, 1244-1258.	2.9	94
24	Taming Human Genetic Variability: Transcriptomic Meta-Analysis Guides the Experimental Design and Interpretation of iPSC-Based Disease Modeling. Stem Cell Reports, 2017, 8, 1784-1796.	2.3	86
25	The Histone Methyltransferase Wbp7 Controls Macrophage Function through GPI Glycolipid Anchor Synthesis. Immunity, 2012, 36, 572-585.	6.6	79
26	DNA Damage in Mammalian Neural Stem Cells Leads to Astrocytic Differentiation Mediated by BMP2 Signaling through JAK-STAT. Stem Cell Reports, 2013, 1, 123-138.	2.3	79
27	Polycomb proteins control proliferation and transformation independently of cell cycle checkpoints by regulating DNA replication. Nature Communications, 2014, 5, 3649.	5.8	79
28	The Methyltransferase Set7/9 (Setd7) Is Dispensable for the p53-Mediated DNA Damage Response InÂVivo. Molecular Cell, 2011, 43, 681-688.	4.5	77
29	Ethical Standards for Human-to-Animal Chimera Experiments in Stem Cell Research. Cell Stem Cell, 2007, 1, 159-163.	5. 2	76
30	The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 306-327.	2.5	73
31	Dosage analysis of the $7q11.23$ Williams region identifies <i>BAZ1B</i> as a major human gene patterning the modern human face and underlying self-domestication. Science Advances, 2019, 5, eaaw7908.	4.7	67
32	Cell Reprogramming Requires Silencing of a Core Subset of Polycomb Targets. PLoS Genetics, 2013, 9, e1003292.	1.5	59
33	DNA Methylation Signature for EZH2 Functionally Classifies Sequence Variants in Three PRC2 Complex Genes. American Journal of Human Genetics, 2020, 106, 596-610.	2.6	59
34	RNAontheBENCH: computational and empirical resources for benchmarking RNAseq quantification and differential expression methods. Nucleic Acids Research, 2016, 44, 5054-5067.	6.5	48
35	Human Cortical Organoids Expose a Differential Function of GSK3 on Cortical Neurogenesis. Stem Cell Reports, 2019, 13, 847-861.	2.3	48
36	Multiplex parenting: IVG and the generations to come. Journal of Medical Ethics, 2014, 40, 752-758.	1.0	43

3

#	Article	IF	Citations
37	Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TAZ. Nature Communications, 2021, 12, 2340.	5.8	43
38	ETHICS AND SYNTHETIC GAMETES. Bioethics, 2005, 19, 146-166.	0.7	42
39	Reconstitution of a functional human thymus by postnatal stromal progenitor cells and natural whole-organ scaffolds. Nature Communications, 2020, 11, 6372.	5.8	42
40	Imbalanced autophagy causes synaptic deficits in a human model for neurodevelopmental disorders. Autophagy, 2022, 18, 423-442.	4.3	42
41	GENETICS: Ethical Aspects of ES Cell-Derived Gametes. Science, 2004, 305, 1719-1719.	6.0	41
42	Scrutinizing the EU General Data Protection Regulation. Science, 2018, 360, 496-498.	6.0	40
43	CHD8 haploinsufficiency links autism to transient alterations in excitatory and inhibitory trajectories. Cell Reports, 2022, 39, 110615.	2.9	40
44	Consuming genomes: scientific and social innovation in direct-to-consumer genetic testing. New Genetics and Society, 2012, 31, 159-181.	0.7	29
45	HOXB7 overexpression in lung cancer is a hallmark of acquired stem-like phenotype. Oncogene, 2018, 37, 3575-3588.	2.6	29
46	KMT2B Is Selectively Required for Neuronal Transdifferentiation, and Its Loss Exposes Dystonia Candidate Genes. Cell Reports, 2018, 25, 988-1001.	2.9	28
47	The Identity of Living Beings, Epigenetics, and the Modesty of Philosophy. Erkenntnis, 2012, 76, 279-298.	0.6	26
48	The time of timing: How Polycomb proteins regulate neurogenesis. BioEssays, 2011, 33, 519-528.	1.2	25
49	BAC Engineering for the Generation of ES Cell-Targeting Constructs and Mouse Transgenes. , 2004, 256, 123-140.		24
50	JMJD3 acts in tandem with KLF4 to facilitate reprogramming to pluripotency. Nature Communications, 2020, 11, 5061.	5.8	24
51	The ENDpoiNTs Project: Novel Testing Strategies for Endocrine Disruptors Linked to Developmental Neurotoxicity. International Journal of Molecular Sciences, 2020, 21, 3978.	1.8	24
52	Bacterial Artificial Chromosome Transgenesis Through Pronuclear Injection of Fertilized Mouse Oocytes., 2008, 415, 83-100.		24
53	ET Recombination: DNA Engineering Using Homologous Recombination in E. coli <f\$>., 2004, 256, 107-122.</f\$>		23
54	Polycomb dysregulation in gliomagenesis targets a Zfp423-dependent differentiation network. Nature Communications, 2016, 7, 10753.	5.8	23

#	Article	IF	CITATIONS
55	Exploiting epigenetic dependencies in ovarian cancer therapy. International Journal of Cancer, 2021, 149, 1732-1743.	2.3	22
56	Naked Genes., 2011,,.		22
57	Long nonâ€coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation. EMBO Reports, 2021, 22, e50852.	2.0	21
58	The guanine nucleotide exchange factor Arhgef7 \hat{l}^2 Pix promotes axon formation upstream of TC10. Scientific Reports, 2018, 8, 8811.	1.6	20
59	High-throughput screening identifies histone deacetylase inhibitors that modulate GTF2I expression in $7q11.23$ microduplication autism spectrum disorder patient-derived cortical neurons. Molecular Autism, 2020, $11,88$.	2.6	20
60	Single cell-derived spheroids capture the self-renewing subpopulations of metastatic ovarian cancer. Cell Death and Differentiation, 2022, 29, 614-626.	5.0	20
61	Stem Cells through Stem Beliefs: The Co-production of Biotechnological Pluralism. Science As Culture, 2008, 17, 435-448.	2.4	16
62	The European politics of animal experimentation: From Victorian Britain to †Stop Vivisectionâ€. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2017, 64, 75-87.	0.8	16
63	Copy number variants (CNVs): a powerful tool for iPSC-based modelling of ASD. Molecular Autism, 2020, 11, 42.	2.6	14
64	The future therapeutic potential of histone demethylases: A critical analysis. Current Opinion in Drug Discovery & Development, 2009, 12, 607-15.	1.9	14
65	T cell receptor \hat{I}^1 an alternatively spliced product of the T cell receptor \hat{I}^{\P} gene. European Journal of Immunology, 1995, 25, 1405-1409.	1.6	13
66	What to Do with the Grail Now that We Have It? iPSCs, Potentiality, and Public Policy. Cell Stem Cell, 2009, 5, 358-359.	5.2	13
67	Brief Report: Functional MRI of a Patient with 7q11.23 Duplication Syndrome and Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 2014, 44, 2608-2613.	1.7	13
68	Big Tech platforms in health research: Re-purposing big data governance in light of the General Data Protection Regulation's research exemption. Big Data and Society, 2021, 8, 205395172110187.	2.6	13
69	A cell-of-origin epigenetic tracer reveals clinically distinct subtypes of high-grade serous ovarian cancer. Genome Medicine, 2020, 12, 94.	3.6	11
70	Novel in vitro Experimental Approaches to Study Myelination and Remyelination in the Central Nervous System. Frontiers in Cellular Neuroscience, 2021, 15, 748849.	1.8	11
71	Ethics Report on Interspecies Somatic Cell Nuclear Transfer Research. Cell Stem Cell, 2009, 5, 27-30.	5.2	10
72	The epigenomic self in personalized medicine: between responsibility and empowerment. Sociological Review Mongraph, 2016, 64, 203-220.	0.9	10

#	Article	IF	CITATIONS
73	"Having a Structuring Effect on Europe†The Innovative Medicines Initiative and the Construction of the European Health Bioeconomy., 2017,, 73-101.		10
74	The sociability spectrum: evidence from reciprocal genetic copy number variations. Molecular Autism, 2020, 11, 50.	2.6	10
75	Cre ating a trans lox ation. EMBO Reports, 2000, 1, 120-121.	2.0	9
76	The Epigenomic Self in Personalized Medicine: Between Responsibility and Empowerment. Sociological Review, 2016, 64, 203-220.	0.9	9
77	Seizure activity and brain damage in a model of focal nonâ€convulsive <i>status epilepticus</i> . Neuropathology and Applied Neurobiology, 2021, 47, 679-693.	1.8	9
78	Position Statement on the Provision and Procurement of Human Eggs for Stem Cell Research. Cell Stem Cell, 2013, 12, 285-291.	5.2	8
79	From enhanceropathies to the epigenetic manifold underlying human cognition. Human Molecular Genetics, 2019, 28, R226-R234.	1.4	8
80	EZH2-Mediated H3K27me3 Targets Transcriptional Circuits of Neuronal Differentiation. Frontiers in Neuroscience, 2022, 16, .	1.4	8
81	The Ethics of Deriving Gametes from ES Cells. Science, 2005, 307, 515c-517c.	6.0	7
82	Integrated molecular profiling of patientâ€derived ovarian cancer models identifies clinically relevant signatures and tumor vulnerabilities. International Journal of Cancer, 2022, 151, 240-254.	2.3	7
83	Microinjection of BAC DNA into the Pronuclei of Fertilized Mouse Oocytes. , 2004, 256, 141-158.		5
84	Molecular investigation, using chromosomal microarray and whole exome sequencing, of six patients affected by Williams Beuren syndrome and Autism Spectrum Disorder. Orphanet Journal of Rare Diseases, 2019, 14, 121.	1.2	5
85	Thinking "ethical―when designing an international, crossâ€disciplinary biomedical research consortium. EMBO Journal, 2020, 39, e105725.	3.5	5
86	More than Just a Nucleus: Cloning and the Alignment of Scientific and Political Rationalities. , 2011 , , $85\text{-}104$.		5
87	Reprogramming Potentiality: The Co-Production of Stem Cell Policy and Democracy. American Journal of Bioethics, 2013, 13, 30-32.	0.5	4
88	A small 7q11.23 microduplication involving <scp><i>GTF2I</i></scp> in a family with intellectual disability. Clinical Genetics, 2020, 97, 940-942.	1.0	4
89	Acting on uncertainty: real-life mixtures of endocrine disrupting chemicals. BioSocieties, 2021, 16, 225-248.	0.8	4
90	COVIDâ€19 lessons from the dish: Dissecting CNS manifestations through brain organoids. EMBO Journal, 2021, 40, e107213.	3.5	4

#	Article	IF	CITATIONS
91	At the Intersection of Epigenetics and Regeneration: An Analysis of the Experimental Outlook of Organoid Technology., 2019,, 385-402.		3
92	iPSC- and Organoid-Based Biomedicine at the Intersection of Epigenetics and Regeneration: Charting the Normative Contours of Emerging Biomedical Platforms., 2019,, 493-509.		3
93	Three-dimensional models of human brain development. , 2020, , 257-278.		2
94	Thymic stroma and TFII-I: towards new targeted therapies. Trends in Molecular Medicine, 2022, 28, 67-78.	3 . 5	2
95	Scrutinizing the Epigenetics Revolution. , 2018, , 191-225.		1
96	KMT2B and Neuronal Transdifferentiation: Bridging Basic Chromatin Mechanisms to Disease Actionability. Neuroscience Insights, 2020, 15, 263310552092806.	0.9	1
97	Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. Journal of Clinical Investigation, 2014, 124, 1869-1869.	3.9	1
98	What to Do with the Grail Now that We Have It? iPSCs, Potentiality, and Public Policy. Cell Stem Cell, 2009, 5, 567.	5.2	0
99	KMT2B Is Selectively Required for Direct Neuronal Reprogramming and Its Loss Exposes Dystonia-Relevant Targets. SSRN Electronic Journal, 0, , .	0.4	O
100	The developmental origins of high grade serous ovarian cancer Journal of Clinical Oncology, 2019, 37, e17063-e17063.	0.8	0
101	Big Tech Platforms in Health Research: Re-purposing Big Data Governance in Light of the GDPR's Research Exemption. SSRN Electronic Journal, 0, , .	0.4	O