Maojun Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6751343/publications.pdf Version: 2024-02-01

Μλομινι Ιιν

#	Article	IF	CITATIONS
1	Simultaneous Determination of Five Plant Growth Regulators in Fruits by Modified Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2012, 60, 60-65.	5.2	91
2	pH-Responsive On-Demand Alkaloids Release from Core–Shell ZnO@ZIF-8 Nanosphere for Synergistic Control of Bacterial Wilt Disease. ACS Nano, 2022, 16, 2762-2773.	14.6	72
3	SERS-active metal–organic frameworks with embedded gold nanoparticles. Analyst, The, 2017, 142, 2640-2647.	3.5	69
4	Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on Fe 3 O 4 -chitosan. Carbohydrate Polymers, 2016, 137, 75-81.	10.2	63
5	Hapten design and indirect competitive immunoassay for parathion determination: Correlation with molecular modeling and principal component analysis. Analytica Chimica Acta, 2007, 591, 173-182.	5.4	62
6	A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water. Analytical and Bioanalytical Chemistry, 2017, 409, 7133-7144.	3.7	58
7	Fluorescence immunoassay for multiplex detection of organophosphate pesticides in agro-products based on signal amplification of gold nanoparticles and oligonucleotides. Food Chemistry, 2020, 326, 126813.	8.2	55
8	Metal-organic framework UiO-66 for rapid dispersive solid phase extraction of neonicotinoid insecticides in water samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1077-1078, 92-97.	2.3	49
9	Pesticide use and residue control in China. Journal of Pesticide Sciences, 2010, 35, 138-142.	1.4	48
10	Residue behaviors and risk assessment of flonicamid and its metabolites in the cabbage field ecosystem. Ecotoxicology and Environmental Safety, 2018, 161, 420-429.	6.0	47
11	Competitive Bio-Barcode Immunoassay for Highly Sensitive Detection of Parathion Based on Bimetallic Nanozyme Catalysis. Journal of Agricultural and Food Chemistry, 2020, 68, 660-668.	5.2	45
12	Preparation of magnetic metal organic framework composites for the extraction of neonicotinoid insecticides from environmental water samples. RSC Advances, 2016, 6, 113144-113151.	3.6	44
13	A simple and sensitive competitive bio-barcode immunoassay for triazophos based on multi-modified gold nanoparticles and fluorescent signal amplification. Analytica Chimica Acta, 2018, 999, 123-131.	5.4	42
14	Preparation of a magnetic molecularly imprinted polymer using g-C3N4–Fe3O4 for atrazine adsorption. Materials Letters, 2015, 160, 472-475.	2.6	41
15	A Competitive Bio-Barcode Amplification Immunoassay for Small Molecules Based on Nanoparticles. Scientific Reports, 2016, 6, 38114.	3.3	41
16	Spectrophotometric and visual detection of the herbicide atrazine by exploiting hydrogen bond-induced aggregation of melamine-modified gold nanoparticles. Mikrochimica Acta, 2015, 182, 1983-1989.	5.0	40
17	A review of enhancers for chemiluminescence enzyme immunoassay. Food and Agricultural Immunology, 2017, 28, 315-327.	1.4	40
18	Selective solid-phase extraction based on molecularly imprinted technology for the simultaneous determination of 20 triazole pesticides in cucumber samples using high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1064, 143-150.	2.3	40

Μαοјυν Jin

#	Article	IF	CITATIONS
19	Selective Determination of Chloramphenicol in Milk Samples by the Solid-Phase Extraction Based on Dummy Molecularly Imprinted Polymer. Food Analytical Methods, 2017, 10, 2566-2575.	2.6	34
20	Generation of functional single-chain fragment variable from hybridoma and development of chemiluminescence enzyme immunoassay for determination of total malachite green in tilapia fish. Food Chemistry, 2021, 337, 127780.	8.2	33
21	Simultaneous Determination of Perfluorinated Compounds in Edible Oil by Gel-Permeation Chromatography Combined with Dispersive Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2015, 63, 8364-8371	5.2	32
22	Enzyme inhibition methods based on Au nanomaterials for rapid detection of organophosphorus pesticides in agricultural and environmental samples: A review. Journal of Advanced Research, 2022, 37, 61-74.	9.5	32
23	Highly sensitive detection of triazophos pesticide using a novel bio-bar-code amplification competitive immunoassay in a micro well plate-based platform. Sensors and Actuators B: Chemical, 2018, 256, 457-464.	7.8	31
24	Bio-barcode detection technology and its research applications: A review. Journal of Advanced Research, 2019, 20, 23-32.	9.5	31
25	Colorimetric sensing of atrazine in rice samples using cysteamine functionalized gold nanoparticles after solid phase extraction. Analytical Methods, 2016, 8, 52-56.	2.7	30
26	Colorimetric bio-barcode immunoassay for parathion based on amplification by using platinum nanoparticles acting as a nanozyme. Mikrochimica Acta, 2019, 186, 339.	5.0	30
27	Rapid Determination of Chlormequat in Meat by Dispersive Solid-Phase Extraction and Hydrophilic Interaction Liquid Chromatography (HILIC)–Electrospray Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2012, 60, 6816-6822.	5.2	29
28	Molecularly imprinted polymer for selective extraction and simultaneous determination of four tropane alkaloids from Przewalskia tangutica Maxim. fruit extracts using LC-MS/MS. RSC Advances, 2015, 5, 94997-95006.	3.6	29
29	Novel Fe3O4@metal-organic framework@polymer core-shell-shell nanospheres for fast extraction and specific preconcentration of nine organophosphorus pesticides from complex matrices. Food Chemistry, 2021, 365, 130485.	8.2	29
30	A sensitive chemiluminescence enzyme immunoassay based on molecularly imprinted polymers solid-phase extraction of parathion. Analytical Biochemistry, 2017, 530, 87-93.	2.4	28
31	Fast determination of alkylphenol ethoxylates in leafy vegetables using a modified quick, easy, cheap, effective, rugged, and safe method and ultra-high performance supercritical fluid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2017, 1525, 161-172.	3.7	28
32	Subcritical water extraction combined with molecular imprinting technology for sample preparation in the detection of triazine herbicides. Journal of Chromatography A, 2017, 1515, 17-22.	3.7	28
33	A sensitive bio-barcode immunoassay based on bimetallic Au@Pt nanozyme for detection of organophosphate pesticides in various agro-products. Food Chemistry, 2021, 362, 130118.	8.2	27
34	Oneâ€pot synthesis of magnetic zeolitic imidazolate framework/grapheme oxide composites for the extraction of neonicotinoid insecticides from environmental water samples. Journal of Separation Science, 2017, 40, 4747-4756.	2.5	26
35	Competitive colorimetric triazophos immunoassay employing magnetic microspheres and multi-labeled gold nanoparticles along with enzymatic signal enhancement. Mikrochimica Acta, 2017, 184, 3705-3712.	5.0	26
36	Development of a direct competitive enzyme-linked immunoassay for carbofuran in vegetables. Food Chemistry, 2008, 107, 1737-1742.	8.2	24

Μαοјυν Jin

#	Article	IF	CITATIONS
37	Enhanced Competitive Chemiluminescent Enzyme Immunoassay for the Trace Detection of Insecticide Triazophos. Journal of Food Science, 2012, 77, T99-T104.	3.1	24
38	Study on Enhancement Principle and Stabilization for the Luminol-H2O2-HRP Chemiluminescence System. PLoS ONE, 2015, 10, e0131193.	2.5	24
39	Simple and sensitive detection of triazophos pesticide by using quantum dots nanobeads based on immunoassay. Food and Agricultural Immunology, 2019, 30, 522-532.	1.4	24
40	Electrochemical detection of ractopamine based on a molecularly imprinted poly-o-phenylenediamine/gold nanoparticle–ionic liquid–graphene film modified glass carbon electrode. RSC Advances, 2016, 6, 66949-66956.	3.6	23
41	Development of a sensitive competitive indirect ELISA for parathion residue in agricultural and environmental samples. Ecotoxicology and Environmental Safety, 2009, 72, 1673-1679.	6.0	20
42	Determination of hymexazol in 26 foods of plant origin by modified QuEChERS method and liquid chromatography tandem-mass spectrometry. Food Chemistry, 2017, 228, 411-419.	8.2	20
43	Development of immunoassays for multi-residue detection of small molecule compounds. Food and Agricultural Immunology, 2018, 29, 638-652.	1.4	20
44	Residues determination of carbofuran in vegetables based on sensitive time-resolved fluorescence immunoassay. Food and Agricultural Immunology, 2009, 20, 49-56.	1.4	19
45	Rapid Analysis of Bitertanol in Agro-products Using Molecularly Imprinted Polymers-Surface-Enhanced Raman Spectroscopy. Food Analytical Methods, 2018, 11, 1435-1443.	2.6	17
46	Simultaneous determination of four organotins in food packaging by high-performance liquid chromatography–tandem mass spectrometry. Food Chemistry, 2015, 181, 347-353.	8.2	16
47	Enhancing the Sensitivity of the Bio-barcode Immunoassay for Triazophos Detection Based on Nanoparticles and Droplet Digital Polymerase Chain Reaction. Journal of Agricultural and Food Chemistry, 2019, 67, 12936-12944.	5.2	16
48	A disposable molecularly imprinted sensor based on Graphe@AuNPs modified screen-printed electrode for highly selective and sensitive detection of cyhexatin in pear samples. Sensors and Actuators B: Chemical, 2019, 284, 13-22.	7.8	16
49	A rapid immunomagnetic-bead-based immunoassay for triazophos analysis. RSC Advances, 2015, 5, 81046-81051.	3.6	14
50	The Rapid Screening of Triazophos Residues in Agricultural Products by Chemiluminescent Enzyme Immunoassay. PLoS ONE, 2015, 10, e0133839.	2.5	13
51	Rapid analysis of tristyrylphenol ethoxylates in cucumber-field system using supercritical fluid chromatography–tandem mass spectrometry. Food Chemistry, 2018, 266, 119-125.	8.2	13
52	Biomimetic enzyme-linked immunoassay based on a molecularly imprinted 96-well plate for the determination of triazophos residues in real samples. RSC Advances, 2018, 8, 20549-20556.	3.6	13
53	Determination of Melamine Using Magnetic Molecular Imprinted Polymers and High Performance Liquid Chromatography. Analytical Letters, 2013, 46, 120-130.	1.8	12
54	A sensitive fluorometric bio-barcodes immunoassay for detection of triazophos residue in agricultural products and water samples by iterative cycles of DNA-RNA hybridization and dissociation of fluorophores by Ribonuclease H. Science of the Total Environment, 2020, 717, 137268.	8.0	12

Μαοјυν Jin

#	Article	IF	CITATIONS
55	A visual bio-barcode immunoassay for sensitive detection of triazophos based on biochip silver staining signal amplification. Food Chemistry, 2021, 347, 129024.	8.2	11
56	A sensitive chemiluminescent enzyme immunoassay for carbofuran residue in vegetable, fruit and environmental samples. Food and Agricultural Immunology, 2013, 24, 345-356.	1.4	9
57	Fluorescent competitive assay for melamine using dummy molecularly imprinted polymers as antibody mimics. Journal of Integrative Agriculture, 2016, 15, 1166-1177.	3.5	9
58	A competitive immunoassay for detecting triazophos based on fluorescent catalytic hairpin self-assembly. Mikrochimica Acta, 2022, 189, 114.	5.0	9
59	Determination of astaxanthin in feeds using high performance liquid chromatography and an efficient extraction method. Journal of Liquid Chromatography and Related Technologies, 2016, 39, 35-43.	1.0	8
60	Nonylphenol Toxicity Evaluation and Discovery of Biomarkers in Rat Urine by a Metabolomics Strategy through HPLC-QTOF-MS. International Journal of Environmental Research and Public Health, 2016, 13, 501.	2.6	7
61	Tracking Changes of Hexabromocyclododecanes during the Refining Process in Peanut, Corn, and Soybean Oils. Journal of Agricultural and Food Chemistry, 2017, 65, 9880-9886.	5.2	7
62	A highly sensitive bio-barcode immunoassay for multi-residue detection of organophosphate pesticides based on fluorescence anti-quenching. Journal of Pharmaceutical Analysis, 2022, 12, 637-644.	5.3	7
63	A reliable immunoturbidimetry method for immunoglobulin G in bovine colostrum. Food and Agricultural Immunology, 2012, 23, 133-144.	1.4	5
64	Simulation of nonylphenol degradation in leafy vegetables using a deuterated tracer. Environmental Sciences: Processes and Impacts, 2015, 17, 1323-1330.	3.5	5
65	Multiresidue Determination of Six Pesticide Adjuvants in Characteristic Minor Crops Using QuEChERS Method and Gas Chromatographyâ€Mass Spectrometry. ChemistrySelect, 2019, 4, 66-70.	1.5	5
66	Multiresidue Method for Analysis of β Agonists in Swine Urine by Enzyme Linked Receptor Assay Based on β2 Adrenergic Receptor Expressed in HEK293 Cells. PLoS ONE, 2015, 10, e0139176.	2.5	5
67	Residue, Dissipation Pattern, and Dietary Risk Assessment of Imidacloprid in Chinese Chives. Frontiers in Nutrition, 2022, 9, 846333.	3.7	5
68	Design and Characterization of a Novel Hapten and Preparation of Monoclonal Antibody for Detecting Atrazine. Foods, 2022, 11, 1726.	4.3	5
69	Rapid Analysis of Indoxacarb Residues in Vegetable by QuEChERS and LC-MS/MS. Asian Journal of Chemistry, 2013, 25, 3503-3504.	0.3	3
70	Developments on Immunoassays for Pyrethroid Chemicals. Current Organic Chemistry, 2018, 21, .	1.6	3
71	A Competitive Assay Based on Dual-Mode Au@Pt-DNA Biosensors for On-Site Sensitive Determination of Carbendazim Fungicide in Agricultural Products. Frontiers in Nutrition, 2022, 9, 820150.	3.7	3
72	Enhanced Bio-Barcode Immunoassay Using Droplet Digital PCR for Multiplex Detection of Organophosphate Pesticides. Journal of Agricultural and Food Chemistry, 2021, 69, 11131-11141.	5.2	2

#	Article	IF	CITATIONS
73	An optimized LC–MS/MS workflow for evaluating storage stability of fluroxypyr and halosulfuron-methyl in maize samples. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2021, 56, 64-72.	1.5	1
74	A Facile Synthesis of DNA-Magnetic-Fluorescent Composite Particles. Advanced Materials Research, 0, 557-559, 669-673.	0.3	0