Haojun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6750870/publications.pdf

Version: 2024-02-01

69 2,378 22
papers citations h-index

22 45
h-index g-index

71 71 all docs citations

71 times ranked 1921 citing authors

#	Article	IF	CITATIONS
1	Increased 68Ga-FAPI Uptake in Ankylosing Spondylitis in a Patient With Rectal Cancer. Clinical Nuclear Medicine, 2022, 47, 176-178.	0.7	13
2	Increased 68Ga-FAPI Uptake in the Pulmonary Cryptococcus and the Postradiotherapy Inflammation. Clinical Nuclear Medicine, 2022, 47, 243-245.	0.7	10
3	Synthesis, Preclinical Evaluation, and a Pilot Clinical PET Imaging Study of ⁶⁸ Ga-Labeled FAPI Dimer. Journal of Nuclear Medicine, 2022, 63, 862-868.	2.8	59
4	68Ga-FAPI PET/CT Distinguishes the Reactive Lymph Nodes From Tumor Metastatic Lymph Nodes in a Patient With Nasopharyngeal Carcinoma. Clinical Nuclear Medicine, 2022, 47, 367-368.	0.7	10
5	Positron emission tomography and computed tomography with [68Ga]Ga-fibroblast activation protein inhibitors improves tumor detection and staging in patients with pancreatic cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1322-1337.	3.3	49
6	Somatostatin receptor imaging with [68Ga]Ga-DOTATATE positron emission tomography/computed tomography (PET/CT) in patients with nasopharyngeal carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1360-1373.	3.3	7
7	68Ga-FAPI PET/CT detected non-FDG-avid bone metastases in breast cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2096-2097.	3.3	8
8	Fibroblast activation protein-based theranostics in cancer research: A state-of-the-art review. Theranostics, 2022, 12, 1557-1569.	4.6	61
9	A Paradigm of Cancer Immunotherapy Based on 2-[18F]FDG and Anti–PD-L1 mAb Combination to Enhance the Antitumor Effect. Clinical Cancer Research, 2022, 28, 2923-2937.	3.2	12
10	⁶⁸ Ga FAPI PET/MRI in Cardiac Amyloidosis. Radiology, 2022, 303, 51-51.	3.6	12
11	[68Ga]Ga-FAPI PET/CT imaging of brown tumors in a patient with primary hyperparathyroidism. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1770-1771.	3.3	1
12	FAP-targeted radionuclide therapy with [177Lu]Lu-FAPI-46 in metastatic nasopharyngeal carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1767-1769.	3.3	16
13	Dual Targeting of Integrin \hat{l} + $\langle sub \rangle v \langle sub \rangle \hat{l}^2 \langle sub \rangle 3 \langle sub \rangle$ and Neuropilin-1 Receptors Improves Micropositron Emission Tomography Imaging of Breast Cancer. Molecular Pharmaceutics, 2022, 19, 1458-1467.	2.3	1
14	⁶⁸ Ga Fibroblast Activation Protein Inhibitor PET/CT in the Detection of Metastatic Thyroid Cancer: Comparison with ¹⁸ F-FDG PET/CT. Radiology, 2022, 304, 397-405.	3.6	26
15	Rational Design and Pharmacomodulation of Protein-Binding Theranostic Radioligands for Targeting the Fibroblast Activation Protein. Journal of Medicinal Chemistry, 2022, 65, 8245-8257.	2.9	21
16	PD-L1-Targeted Radionuclide Therapy Combined with $\hat{l}\pm PD$ -L1 Antibody Immunotherapy Synergistically Improves the Antitumor Effect. Molecular Pharmaceutics, 2022, 19, 3612-3622.	2.3	15
17	[18F]FDG and [68Ga]Ga-DOTA-FAPI-04 PET/CT in the evaluation of tuberculous lesions. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 651-652.	3.3	42
18	Usefulness of [68Ga]Ga-DOTA-FAPI-04 PET/CT in patients presenting with inconclusive [18F]FDG PET/CT findings. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 73-86.	3.3	153

#	Article	IF	CITATIONS
19	Comparison of ⁶⁸ Ga-FAPI and ¹⁸ F-FDG Uptake in Gastric, Duodenal, and Colorectal Cancers. Radiology, 2021, 298, 393-402.	3.6	171
20	Imaging fibroblast activation protein in liver cancer: a single-center post hoc retrospective analysis to compare [68Ga]Ga-FAPI-04 PET/CT versus MRI and [18F]-FDG PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1604-1617.	3.3	100
21	Cardiac angiosarcoma detected using 68Ga-fibroblast activation protein inhibitor positron emission tomography/magnetic resonance. European Heart Journal, 2021, 42, 1276-1276.	1.0	6
22	Role of [68Ga]Ga-DOTA-FAPI-04 PET/CT in the evaluation of peritoneal carcinomatosis and comparison with [18F]-FDG PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1944-1955.	3.3	75
23	68Ga-DOTA-FAPI-04 PET/CT in Erdheim-Chester Disease. Clinical Nuclear Medicine, 2021, 46, 258-260.	0.7	15
24	68Ga-FAPI PET/CT in Thyroid Cancer With Thyroglobulin Elevation and Negative Iodine Scintigraphy. Clinical Nuclear Medicine, 2021, 46, 427-430.	0.7	22
25	18F-FDG and 68Ga-FAPI PET/CT in the Evaluation of Ground-Glass Opacity Nodule. Clinical Nuclear Medicine, 2021, 46, 424-426.	0.7	7
26	Use of 68Ga-FAPI PET/CT for Evaluation of Peritoneal Carcinomatosis Before and After Cytoreductive Surgery. Clinical Nuclear Medicine, 2021, 46, 491-493.	0.7	8
27	Clinical utility of [68Ga]Ga-labeled fibroblast activation protein inhibitor (FAPI) positron emission tomography/computed tomography for primary staging and recurrence detection in nasopharyngeal carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3606-3617.	3.3	50
28	68Ga-fibroblast activation protein inhibitor PET/CT on gross tumour volume delineation for radiotherapy planning of oesophageal cancer. Radiotherapy and Oncology, 2021, 158, 55-61.	0.3	36
29	68Ga-FAPI PET/CT Versus 18F-FDG PET/CT for the Evaluation of Disease Activity in Takayasu Arteritis. Clinical Nuclear Medicine, 2021, 46, 847-849.	0.7	11
30	68Ga-FAPI PET/CT Versus 18F-FDG PET/CT for Detecting Metastatic Lesions in a Case of Radioiodine-Refractory Differentiated Thyroid Cancer. Clinical Nuclear Medicine, 2021, 46, 940-942.	0.7	18
31	Increased [68ÂGa]Ga-FAPI uptake in focal nodular hyperplasia in a patient with sigmoid colon cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 49, 415-416.	3.3	2
32	Xanthoma Disseminatum Mimicking Peritoneal Carcinomatosis from Hilar Cholangiocarcinoma. Radiology, 2021, 301, 547-547.	3.6	0
33	Widespread Metastatic Gastric Signet-Ring Cell Carcinoma Shown by 68Ga-FAPI PET/CT. Clinical Nuclear Medicine, 2021, 46, e78-e79.	0.7	23
34	68Ga-Fibroblast Activation Protein Inhibitor, a Promising Radiopharmaceutical in PET/CT to Detect the Primary and Metastatic Lesions of Chromophobe Renal Cell Carcinoma. Clinical Nuclear Medicine, 2021, 46, 177-179.	0.7	13
35	Usefulness of [18F]fluorodeoxyglucose PET/CT for evaluating the PD-L1 status in nasopharyngeal carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1065-1074.	3.3	23
36	⁶⁸ Ga FAPI PET/CT Imaging in Peritoneal Carcinomatosis. Radiology, 2020, 297, 521-521.	3.6	17

#	Article	IF	CITATIONS
37	Targeted Radionuclide Therapy in Patient-Derived Xenografts Using 177Lu-EB-RGD. Molecular Cancer Therapeutics, 2020, 19, 2034-2043.	1.9	22
38	68Ga-FAPI PET/CT in Assessment of Liver Nodules in a Cirrhotic Patient. Clinical Nuclear Medicine, 2020, 45, e430-e432.	0.7	42
39	68Ga-FAPI PET/CT in Assessment of Leptomeningeal Metastases in a Patient With Lung Adenocarcinoma. Clinical Nuclear Medicine, 2020, 45, 784-786.	0.7	23
40	Reply: [68Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with hepatic cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2080-2082.	3.3	6
41	Optimal image guidance for tumor biopsy in non-small-cell lung cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2739-2740.	3.3	1
42	Immuno-SPECT/PET imaging with radioiodinated anti-PD-L1 antibody to evaluate PD-L1 expression in immune-competent murine models and PDX model of lung adenocarcinoma. Nuclear Medicine and Biology, 2020, 86-87, 44-51.	0.3	6
43	Comparison of 68Ga-FAPI and 18F-FDG PET/CT in a Patient With Cholangiocellular Carcinoma. Clinical Nuclear Medicine, 2020, 45, 566-567.	0.7	29
44	68Ga-FAPI PET/CT Improves Therapeutic Strategy by Detecting a Second Primary Malignancy in a Patient With Rectal Cancer. Clinical Nuclear Medicine, 2020, 45, 468-470.	0.7	17
45	Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1820-1832.	3.3	348
46	68Ga-FAPI PET/CT Detects Gastric Signet-Ring Cell Carcinoma in a Patient Previously Treated for Prostate Cancer. Clinical Nuclear Medicine, 2020, 45, 632-635.	0.7	22
47	Quantitative evaluation of salivary gland scintigraphy in Sjögren's syndrome: comparison of diagnostic efficacy and relationship with pathological features of the salivary glands. Annals of Nuclear Medicine, 2020, 34, 289-298.	1.2	7
48	[68Ga]Ga-DOTA-FAPI-04 improves tumor staging and monitors early response to chemoradiotherapy in a patient with esophageal cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 3188-3189.	3.3	35
49	Concordance of PD-L1 Status Between Image-Guided Percutaneous Biopsies and Matched Surgical Specimen in Non-Small Cell Lung Cancer. Frontiers in Oncology, 2020, 10, 551367.	1.3	4
50	Comparative study between image-guided percutaneous biopsies and matched surgical specimens for the evaluation of PD-L1 status in non-small cell lung cancer Journal of Clinical Oncology, 2020, 38, e15168-e15168.	0.8	0
51	Integrin $\hat{l}\pm$ (sub>v \hat{l}^2 (sub>3-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy. Theranostics, 2019, 9, 7948-7960.	4.6	64
52	<p>Mismatch repair status and high expression of PD-L1 in nasopharyngeal carcinoma</p> . Cancer Management and Research, 2019, Volume 11, 1631-1640.	0.9	9
53	A Nomogram for the Prediction of Prognosis in Patients With Distant Metastases of Nasopharyngeal Carcinoma. Frontiers in Oncology, 2019, 9, 240.	1.3	8
54	Uncommon Imaging Findings of Inflammatory Myofibroblastic Tumor. Clinical Nuclear Medicine, 2018, 43, e407-e409.	0.7	2

#	Article	IF	Citations
55	Differential diagnostic value of ¹⁸ F-FDG PET/CT for benign and malignant vertebral compression fractures: comparison with magnetic resonance imaging. Cancer Management and Research, 2018, Volume 10, 2105-2115.	0.9	18
56	Prognostic significance of Ki67 expression and the derived neutrophil–lymphocyte ratio in nasopharyngeal carcinoma. Cancer Management and Research, 2018, Volume 10, 1919-1926.	0.9	16
57	Clinical Value of 99mTc-octreotide Scintigraphy and Planar X-ray Mammography for the Diagnosis of Breast Cancer. Current Medical Imaging, 2018, 14, 976-980.	0.4	0
58	Combinatorial Screening of DNA Aptamers for Molecular Imaging of HER2 in Cancer. Bioconjugate Chemistry, 2017, 28, 1068-1075.	1.8	58
59	PET-Guided Evaluation and Optimization of Internalized Antibody–Drug Conjugates Targeting Erythropoietin-Producing Hepatoma A2 Receptor. Journal of Nuclear Medicine, 2017, 58, 1838-1844.	2.8	15
60	Hereditary Leiomyomatosis and Renal Cell Carcinoma Syndrome Combined With Adrenocortical Carcinoma on 18F-FDG PET/CT. Clinical Nuclear Medicine, 2017, 42, 692-694.	0.7	8
61	Novel "Add-On―Molecule Based on Evans Blue Confers Superior Pharmacokinetics and Transforms Drugs to Theranostic Agents. Journal of Nuclear Medicine, 2017, 58, 590-597.	2.8	54
62	Quantification of Tumor Vascular Permeability and Blood Volume by Positron Emission Tomography. Theranostics, 2017, 7, 2363-2376.	4.6	23
63	Microsatellite stability and mismatch repair proficiency in nasopharyngeal carcinoma may not predict programmed death-1 blockade resistance. Oncotarget, 2017, 8, 113287-113293.	0.8	3
64	Chemical Conjugation of Evans Blue Derivative: A Strategy to Develop Long-Acting Therapeutics through Albumin Binding. Theranostics, 2016, 6, 243-253.	4.6	58
65	Clinical Application of Radiolabeled RGD Peptides for PET Imaging of Integrin \hat{l}_{\pm} _v \hat{l}^{2} ₃ . Theranostics, 2016, 6, 78-92.	4.6	233
66	Boramino acid as a marker for amino acid transporters. Science Advances, 2015, 1, e1500694.	4.7	49
67	3'-Deoxy-3'-[18F]-fluorothymidine PET/CT in early determination of prognosis in patients with esophageal squamous cell cancer. Strahlentherapie Und Onkologie, 2015, 191, 141-152.	1.0	22
68	Imaging Integrin αvβ3 and NRP-1 Positive Gliomas with a Novel Fluorine-18 Labeled RGD-ATWLPPR Heterodimeric Peptide Probe. Molecular Imaging and Biology, 2014, 16, 781-792.	1.3	41
69	Imaging integrin \hat{l} ± $v\hat{l}^2$ 3 positive glioma with a novel RGD dimer probe and the impact of antiangiogenic agent (Endostar) on its tumor uptake. Cancer Letters, 2013, 335, 75-80.	3.2	21