Barbara Bardoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/675084/publications.pdf

Version: 2024-02-01

73 papers 6,701 citations

76196 40 h-index 71 g-index

75 all docs

75 docs citations

75 times ranked

6313 citing authors

#	Article	IF	CITATIONS
1	Phosphodiesterase 2A inhibition corrects the aberrant behavioral traits observed in genetic and environmental preclinical models of Autism Spectrum Disorder. Translational Psychiatry, 2022, 12, 119.	2.4	7
2	Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Molecular Psychiatry, 2021, 26, 4570-4582.	4.1	58
3	Missense mutation of Fmr1 results in impaired AMPAR-mediated plasticity and socio-cognitive deficits in mice. Nature Communications, 2021, 12, 1557.	5.8	28
4	A novel microduplication in INPP5A segregates with schizophrenia spectrum disorder in the family of a patient with both childhood onset schizophrenia and autism spectrum disorder. American Journal of Medical Genetics, Part A, 2021, 185, 1841-1847.	0.7	2
5	Fragile X mental retardation protein (FMRP) and metabotropic glutamate receptor subtype 5 (mGlu5) control stress granule formation in astrocytes. Neurobiology of Disease, 2021, 154, 105338.	2.1	8
6	Rett Syndrome and Fragile X Syndrome: Different Etiology With Common Molecular Dysfunctions. Frontiers in Cellular Neuroscience, 2021, 15, 764761.	1.8	12
7	A Pilot Study on Early-Onset Schizophrenia Reveals the Implication of Wnt, Cadherin and Cholecystokinin Receptor Signaling in Its Pathophysiology. Frontiers in Genetics, 2021, 12, 792218.	1.1	2
8	Agonist-induced functional analysis and cell sorting associated with single-cell transcriptomics characterizes cell subtypes in normal and pathological brain. Genome Research, 2020, 30, 1633-1642.	2.4	7
9	Editorial: "Role of Ribonucleoprotein Complexes in Neurodevelopment and in the Physiopathology of Neurological Diseases― Frontiers in Molecular Biosciences, 2020, 7, 630498.	1.6	O
10	Involvement of Phosphodiesterase 2A Activity in the Pathophysiology of Fragile X Syndrome. Cerebral Cortex, 2019, 29, 3241-3252.	1.6	35
11	Reduction of Fmr1 mRNA Levels Rescues Pathological Features in Cortical Neurons in a Model of FXTAS. Molecular Therapy - Nucleic Acids, 2019, 18, 546-553.	2.3	11
12	Childhood-Onset Schizophrenia: A Systematic Overview of Its Genetic Heterogeneity From Classical Studies to the Genomic Era. Frontiers in Genetics, 2019, 10, 1137.	1.1	25
13	Sumoylation regulates FMRP-mediated dendritic spine elimination and maturation. Nature Communications, 2018, 9, 757.	5.8	63
14	HITS-CLIP in various brain areas reveals new targets and new modalities of RNA binding by fragile X mental retardation protein. Nucleic Acids Research, 2018, 46, 6344-6355.	6.5	124
15	Fragile X Mental Retardation Protein: To Be or Not to Be a Translational Enhancer. Frontiers in Molecular Biosciences, 2018, 5, 113.	1.6	16
16	New Insights Into the Role of Cav2 Protein Family in Calcium Flux Deregulation in Fmr1-KO Neurons. Frontiers in Molecular Neuroscience, 2018, 11, 342.	1.4	17
17	Modeling Fragile X Syndrome in Drosophila. Frontiers in Molecular Neuroscience, 2018, 11, 124.	1.4	46
18	Translating molecular advances in Down syndrome and Fragile X syndrome into therapies. European Neuropsychopharmacology, 2018, 28, 675-690.	0.3	14

#	Article	IF	CITATIONS
19	Exploration and characterisation of the phenotypic and genetic profiles of patients with early onset schizophrenia associated with autism spectrum disorder and their first-degree relatives: a French multicentre case series study protocol (GenAuDiss). BMJ Open, 2018, 8, e023330.	0.8	5
20	New insights into the regulatory function of CYFIP1 in the context of WAVE- and FMRP-containing complexes. DMM Disease Models and Mechanisms, 2017, 10, 463-474.	1.2	49
21	Modeling Fragile X syndrome in neurogenesis: An unexpected phenotype and a novel tool for future therapies. Neurogenesis (Austin, Tex), 2017, 4, e1270384.	1.5	16
22	A new <i>cis</i> -acting motif is required for the axonal SMN-dependent Anxa2 mRNA localization. Rna, 2017, 23, 899-909.	1.6	22
23	Depletion of the Fragile X Mental Retardation Protein in Embryonic Stem Cells Alters the Kinetics of Neurogenesis. Stem Cells, 2017, 35, 374-385.	1.4	32
24	The Search for an Effective Therapy to Treat Fragile X Syndrome: Dream or Reality?. Frontiers in Synaptic Neuroscience, 2017, 9, 15.	1.3	32
25	Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3619-28.	3.3	79
26	Dendritic targeting of short and long 3′ UTR BDNF mRNA is regulated by BDNF or NT-3 and distinct sets of RNA-binding proteins. Frontiers in Molecular Neuroscience, 2015, 8, 62.	1.4	39
27	The FMRP/ <i>GRK4</i> mRNA interaction uncovers a new mode of binding of the Fragile X mental retardation protein in cerebellum. Nucleic Acids Research, 2015, 43, 8540-8550.	6.5	24
28	Human regulator of telomere elongation helicase 1 (RTEL1) is required for the nuclear and cytoplasmic trafficking of pre-U2 RNA. Nucleic Acids Research, 2015, 43, 1834-1847.	6.5	26
29	CYFIP family proteins between autism and intellectual disability: links with Fragile X syndrome. Frontiers in Cellular Neuroscience, 2014, 8, 81.	1.8	96
30	Fragile X Syndrome: From molecular pathology to therapy. Neuroscience and Biobehavioral Reviews, 2014, 46, 242-255.	2.9	96
31	Quantitative Phosphoproteomics of Murine <i>Fmr1</i> -KO Cell Lines Provides New Insights into FMRP-Dependent Signal Transduction Mechanisms. Journal of Proteome Research, 2014, 13, 4388-4397.	1.8	29
32	Loss of FMR2 further emphasizes the link between deregulation of immediate early response genes FOS and JUN and intellectual disability. Human Molecular Genetics, 2013, 22, 2984-2991.	1.4	10
33	The 3' UTR of FMR1 mRNA is a target of miR-101, miR-129-5p and miR-221: implications for the molecular pathology of FXTAS at the synapse. Human Molecular Genetics, 2013, 22, 1971-1982.	1.4	65
34	A Novel Role for the RNA–Binding Protein FXR1P in Myoblasts Cell-Cycle Progression by Modulating p21/Cdkn1a/Cip1/Waf1 mRNA Stability. PLoS Genetics, 2013, 9, e1003367.	1.5	67
35	Visual Search of Neuropil-Enriched RNAs from Brain In Situ Hybridization Data through the Image Analysis Pipeline Hippo-ATESC. PLoS ONE, 2013, 8, e74481.	1.1	9
36	Intellectual disabilities, neuronal posttranscriptional RNA metabolism, and RNA-binding proteins. Progress in Brain Research, 2012, 197, 29-51.	0.9	13

#	Article	IF	CITATIONS
37	A metabolomic and systems biology perspective on the brain of the Fragile X syndrome mouse model. Genome Research, 2011, 21, 2190-2202.	2.4	110
38	Functional characterization of the AFF (AF4/FMR2) family of RNA-binding proteins: insights into the molecular pathology of FRAXE intellectual disability. Human Molecular Genetics, 2011, 20, 1873-1885.	1.4	63
39	The role of G-quadruplex in RNA metabolism: Involvement of FMRP and FMR2P. Biochimie, 2010, 92, 919-926.	1.3	68
40	FRAXE-associated mental retardation protein (FMR2) is an RNA-binding protein with high affinity for G-quartet RNA forming structure. Nucleic Acids Research, 2009, 37, 1269-1279.	6.5	67
41	A Novel Function for Fragile X Mental Retardation Protein in Translational Activation. PLoS Biology, 2009, 7, e1000016.	2.6	175
42	Dax-1 Knockdown in Mouse Embryonic Stem Cells Induces Loss of Pluripotency and Multilineage Differentiation. Stem Cells, 2009, 27, 1529-1537.	1.4	70
43	The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. Journal of Cell Biology, 2008, 180, 579-595.	2.3	196
44	The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules. Human Molecular Genetics, 2007, 16, 3047-3058.	1.4	119
45	Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature, 2006, 442, 814-817.	13.7	289
46	The Structure of the N-Terminal Domain of the Fragile X Mental Retardation Protein: A Platform for Protein-Protein Interaction. Structure, 2006, 14, 21-31.	1.6	102
47	Fragile X related protein 1 isoforms differentially modulate the affinity of fragile X mental retardation protein for G-quartet RNA structure. Nucleic Acids Research, 2006, 35, 299-306.	6.5	49
48	The nuclear MicroSpherule protein 58 is a novel RNA-binding protein that interacts with fragile X mental retardation protein in polyribosomal mRNPs from neurons. Human Molecular Genetics, 2006, 15, 1525-1538.	1.4	61
49	The fragile X syndrome: exploring its molecular basis and seeking a treatment. Expert Reviews in Molecular Medicine, 2006, 8, 1-16.	1.6	90
50	FMRP interferes with the Rac1 pathway and controls actin cytoskeleton dynamics in murine fibroblasts. Human Molecular Genetics, 2005, 14, 835-844.	1.4	144
51	Fxr1 knockout mice show a striated muscle phenotype: implications for Fxr1p function in vivo. Human Molecular Genetics, 2004, 13, 1291-1302.	1.4	119
52	Biochemical evidence for the association of fragile X mental retardation protein with brain polyribosomal ribonucleoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13357-13362.	3.3	156
53	CYFIP2 is highly abundant in CD4+ cells from multiple sclerosis patients and is involved in T cell adhesion. European Journal of Immunology, 2004, 34, 1217-1227.	1.6	34
54	WAVE/SCAR, a multifunctional complex coordinating different aspects of neuronal connectivity. Developmental Biology, 2004, 274, 260-270.	0.9	70

#	Article	IF	Citations
55	NUFIP1 (nuclear FMRP interacting protein 1) is a nucleocytoplasmic shuttling protein associated with active synaptoneurosomes. Experimental Cell Research, 2003, 289, 95-107.	1.2	53
56	CYFIP/Sra-1 Controls Neuronal Connectivity in Drosophila and Links the Rac1 GTPase Pathway to the Fragile X Protein. Neuron, 2003, 38, 887-898.	3.8	286
57	82-FIP, a novel FMRP (Fragile X Mental Retardation Protein) interacting protein, shows a cell cycle-dependent intracellular localization. Human Molecular Genetics, 2003, 12, 1689-1698.	1.4	62
58	Novel Features of dFMR1, the Drosophila Orthologue of the Fragile X Mental Retardation Protein. Neurobiology of Disease, 2002, 11, 53-63.	2.1	33
59	Advances in understanding of fragile X pathogenesis and FMRP function, and in identification of X linked mental retardation genes. Current Opinion in Genetics and Development, 2002, 12, 284-293.	1.5	127
60	Two sisters with 45,X karyotype: influence of genomic imprinting on phenotype and cognitive profile. European Journal of Pediatrics, 2002, 161, 224-225.	1.3	8
61	The Fragile X mental retardation protein. Brain Research Bulletin, 2001, 56, 375-382.	1.4	72
62	FMR1 gene and fragile X syndrome. American Journal of Medical Genetics Part A, 2000, 97, 153-163.	2.4	62
63	Opposite deletions/duplications of the X chromosome: two novel reciprocal rearrangements. European Journal of Human Genetics, 2000, 8, 63-70.	1.4	16
64	FMR1 gene and fragile X syndrome. , 2000, 97, 153.		1
65	A Transcriptional Silencing Domain in DAX-1 Whose Mutation Causes Adrenal Hypoplasia Congenita. Molecular Endocrinology, 1997, 11, 1950-1960.	3.7	166
66	Multiple congenital anomalies, brain hypomyelination, and ocular albinism in a female with dup(X)(pterâ†'q24::q21.32â†'qter) and random X inactivation. American Journal of Medical Genetics Part A, 1997, 72, 329-334.	2.4	25
67	Dicentric chromosome Y associated with Leydig cell agenesis and sex reversal. Clinical Genetics, 1995, 47, 38-41.	1.0	19
68	An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature, 1994, 372, 635-641.	13.7	796
69	Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature, 1994, 372, 672-676.	13.7	722
70	Functional disomy of Xp22-pter in three males carrying a portion of Xp translocated to Yq. Human Genetics, 1993, 91, 333-8.	1.8	42
71	A deletion map of the human Yq11 region: Implications for the evolution of the Y chromosome and tentative mapping of a locus involved in spermatogenesis. Genomics, $1991, 11, 443-451$.	1.3	121
72	A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature, 1991, 353, 529-536.	13.7	852

#	Article	IF	CITATIONS
73	Two families of low-copy-number repeats are interspersed on Xp22.3: Implications for the high frequency of deletions in this region. Genomics, 1990, 8, 263-270.	1.3	71