Johan Hofkens

List of Publications by Citations

Source: https://exaly.com/author-pdf/6750486/johan-hofkens-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

86 25,156 556 132 h-index g-index citations papers 626 28,668 6.86 8.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
556	Role of PFKFB3-driven glycolysis in vessel sprouting. <i>Cell</i> , 2013 , 154, 651-63	56.2	798
555	The rylene colorant familytailored nanoemitters for photonics research and applications. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9068-93	16.4	509
554	Dopant-induced electron localization drives CO reduction to C hydrocarbons. <i>Nature Chemistry</i> , 2018 , 10, 974-980	17.6	435
553	Iron(III)-based metal-organic frameworks as visible light photocatalysts. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14488-91	16.4	413
552	Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 9511-6	11.5	410
551	Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. <i>Nature</i> , 2006 , 439, 572-5	50.4	387
550	Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. <i>Analytical Chemistry</i> , 2007 , 79, 2137-49	7.8	338
549	Thermal unequilibrium of strained black CsPbI thin films. <i>Science</i> , 2019 , 365, 679-684	33.3	272
548	Energy dissipation in multichromophoric single dendrimers. <i>Accounts of Chemical Research</i> , 2005 , 38, 514-22	24.3	257
547	Stretched exponential decay and correlations in the catalytic activity of fluctuating single lipase molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 2368-72	11.5	256
546	Bandgap opening in oxygen plasma-treated graphene. <i>Nanotechnology</i> , 2010 , 21, 435203	3.4	253
545	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981	16.7	222
544	Probing Photophysical Processes in Individual Multichromophoric Dendrimers by Single-Molecule Spectroscopy. <i>Journal of the American Chemical Society</i> , 2000 , 122, 9278-9288	16.4	220
543	Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. <i>Nature Communications</i> , 2018 , 9, 1607	17.4	218
542	Photoswitches: Key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. <i>Laser and Photonics Reviews</i> , 2009 , 3, 180-202	8.3	218
541	Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. <i>ACS Energy Letters</i> , 2020 , 5, 1107-1123	20.1	212
540	Solvent and pH dependent fluorescent properties of a dimethylaminostyryl borondipyrromethene dye in solution. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 5998-6009	2.8	204

(2001-2020)

539	ItN a trap! On the nature of localised states and charge trapping in lead halide perovskites. <i>Materials Horizons</i> , 2020 , 7, 397-410	14.4	204
538	Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions. <i>Advanced Materials</i> , 2010 , 22, 2685-8	24	195
537	Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 561-6	6.4	193
536	Obg and Membrane Depolarization Are Part of a Microbial Bet-Hedging Strategy that Leads to Antibiotic Tolerance. <i>Molecular Cell</i> , 2015 , 59, 9-21	17.6	192
535	An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules. <i>Analytical Chemistry</i> , 2001 , 73, 2078-86	7.8	186
534	Polymers and single molecule fluorescence spectroscopy, what can we learn?. <i>Chemical Society Reviews</i> , 2009 , 38, 313-28	58.5	178
533	Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. <i>Nature Communications</i> , 2013 , 4, 1757	17.4	172
532	2011,		166
531	Design aspects of bright red emissive silver nanoclusters/DNA probes for microRNA detection. <i>ACS Nano</i> , 2012 , 6, 8803-14	16.7	163
530	Single-enzyme kinetics of CALB-catalyzed hydrolysis. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 560-4	16.4	160
529	Super-resolution reactivity mapping of nanostructured catalyst particles. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 9285-9	16.4	157
528	Revealing competitive Forster-type resonance energy-transfer pathways in single bichromophoric molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 13146-51	11.5	152
527	Probing intramolecular Fister resonance energy transfer in a naphthaleneimide-peryleneimide-terrylenediimide-based dendrimer by ensemble and single-molecule fluorescence spectroscopy. <i>Journal of the American Chemical Society</i> , 2005 , 127, 9760-8	16.4	149
526	Fluorescence from Azobenzene Functionalized Poly(propylene imine) Dendrimers in Self-Assembled Supramolecular Structures. <i>Journal of the American Chemical Society</i> , 2000 , 122, 3445-34	4524	148
525	Efficient and Selective Photocatalytic Oxidation of Benzylic Alcohols with Hybrid Organic Perovskite Materials. <i>ACS Energy Letters</i> , 2018 , 3, 755-759	20.1	147
524	Characterization of fluorescence in heat-treated silver-exchanged zeolites. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3049-56	16.4	146
523	Fluorescent proteins: shine on, you crazy diamond. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2387-402	16.4	145
522	Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 2001 98 14398-403	11.5	141

521	Single-molecule surface enhanced resonance Raman spectroscopy of the enhanced green fluorescent protein. <i>Journal of the American Chemical Society</i> , 2003 , 125, 8446-7	16.4	139
520	Polyphenylene dendrimers with different fluorescent chromophores asymmetrically distributed at the periphery. <i>Journal of the American Chemical Society</i> , 2001 , 123, 8101-8	16.4	139
519	Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 1726-34	2.8	137
518	A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants. <i>Journal of the American Chemical Society</i> , 2007 , 129, 13970-7	16.4	136
517	Fluorescence micro(spectro)scopy as a tool to study catalytic materials in action. <i>Chemical Society Reviews</i> , 2010 , 39, 4703-17	58.5	135
516	Intramolecular energy hopping and energy trapping in polyphenylene dendrimers with multiple peryleneimide donor chromophores and a terryleneimide acceptor trap chromophore. <i>Journal of the American Chemical Society</i> , 2001 , 123, 7668-76	16.4	134
515	Single-molecule fluorescence spectroscopy in (bio)catalysis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 12603-9	11.5	131
514	Morphology of large ZSM-5 crystals unraveled by fluorescence microscopy. <i>Journal of the American Chemical Society</i> , 2008 , 130, 5763-72	16.4	130
513	Conformational rearrangements in and twisting of a single molecule. <i>Chemical Physics Letters</i> , 2001 , 333, 255-263	2.5	129
512	Visualizing spatial and temporal heterogeneity of single molecule rotational diffusion in a glassy polymer by defocused wide-field imaging. <i>Polymer</i> , 2006 , 47, 2511-2518	3.9	125
511	Rylenfarbstoffe als maßeschneiderte Nanoemitter fildie Photonik. <i>Angewandte Chemie</i> , 2010 , 122, 9252-9278	3.6	124
510	Giant Electron-Phonon Coupling and Deep Conduction Band Resonance in Metal Halide Double Perovskite. <i>ACS Nano</i> , 2018 , 12, 8081-8090	16.7	123
509	Subdiffraction limited, remote excitation of surface enhanced Raman scattering. <i>Nano Letters</i> , 2009 , 9, 995-1001	11.5	120
508	Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. <i>Journal of the American Chemical Society</i> , 2007 , 129, 16132-41	16.4	120
507	Photophysical Pathways in Highly Sensitive Cs AgBiBr Double-Perovskite Single-Crystal X-Ray Detectors. <i>Advanced Materials</i> , 2018 , 30, e1804450	24	117
506	The ER Stress Sensor PERK Coordinates ER-Plasma Membrane Contact Site Formation through Interaction with Filamin-A and F-Actin Remodeling. <i>Molecular Cell</i> , 2017 , 65, 885-899.e6	17.6	114
505	High-resolution single-turnover mapping reveals intraparticle diffusion limitation in Ti-MCM-41-catalyzed epoxidation. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 908-11	16.4	114
504	Antibunching in the emission of a single tetrachromophoric dendritic system. <i>Journal of the American Chemical Society</i> , 2002 , 124, 14310-1	16.4	114

(2013-2003)

503	Probing Fister Type Energy Pathways in a First Generation Rigid Dendrimer Bearing Two Perylene Imide Chromophores. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 6920-6931	2.8	113
502	Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. <i>Nature Materials</i> , 2016 , 15, 1017-22	27	111
501	Three-dimensional visualization of defects formed during the synthesis of metal-organic frameworks: a fluorescence microscopy study. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 401	- 5 6.4	109
500	Space- and time-resolved visualization of acid catalysis in ZSM-5 crystals by fluorescence microscopy. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 1706-9	16.4	109
499	Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction. <i>PLoS Pathogens</i> , 2011 , 7, e1002456	7.6	108
498	Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. <i>Biophysical Journal</i> , 2008 , 94, 4103-13	2.9	108
497	Intramolecular Fister energy transfer in a dendritic system at the single molecule level. <i>Journal of the American Chemical Society</i> , 2002 , 124, 2418-9	16.4	108
496	Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. <i>Chemical Society Reviews</i> , 2014 , 43, 990-1006	58.5	105
495	Water-soluble monofunctional perylene and terrylene dyes: powerful labels for single-enzyme tracking. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 3372-5	16.4	105
494	LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. <i>Retrovirology</i> , 2013 , 10, 57	3.6	104
493	Radical C-H arylation of the BODIPY core with aryldiazonium salts: synthesis of highly fluorescent red-shifted dyes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4612-6	16.4	104
492	Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 14343-8	11.5	103
491	New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation. <i>Review of Scientific Instruments</i> , 2001 , 72, 36-40	1.7	103
490	Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants. <i>Biophysical Journal</i> , 2007 , 92, L97-9	2.9	101
489	Optical encoding of silver zeolite microcarriers. <i>Advanced Materials</i> , 2010 , 22, 957-60	24	100
488	Singlet oxygen photosensitization by EGFP and its chromophore HBDI. <i>Biophysical Journal</i> , 2008 , 94, 168-72	2.9	99
487	Host Matrix Dependence on the Photophysical Properties of Individual Conjugated Polymer Chains. <i>Macromolecules</i> , 2003 , 36, 500-507	5.5	99
486	Self-assembled organic microfibers for nonlinear optics. <i>Advanced Materials</i> , 2013 , 25, 2084-9	24	98

485	Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings. <i>Nanoscale</i> , 2012 , 4, 1606-11	7.7	97
484	Intramolecular directional ffister resonance energy transfer at the single-molecule level in a dendritic system. <i>Journal of the American Chemical Society</i> , 2003 , 125, 13609-17	16.4	97
483	Parameters Influencing the On- and Off-Times in the Fluorescence Intensity Traces of Single Cyanine Dye Molecules. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 4808-4814	2.8	97
482	Molecular Assembling by the Radiation Pressure of a Focused Laser Beam: Poly(N-isopropylacrylamide) in Aqueous Solution. <i>Langmuir</i> , 1997 , 13, 414-419	4	96
481	Fluorescent probes for superresolution imaging of lipid domains on the plasma membrane. <i>Chemical Science</i> , 2011 , 2, 1548	9.4	95
480	Photophysics of a WaterBoluble Rylene Dye: Comparison with Other Fluorescent Molecules for Biological Applications. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 12242-12251	3.4	95
479	Live-cell SERS endoscopy using plasmonic nanowire waveguides. <i>Advanced Materials</i> , 2014 , 26, 5124-8	24	93
47 ⁸	Effect of Core Structure on Photophysical and Hydrodynamic Properties of Porphyrin Dendrimers. <i>Macromolecules</i> , 2000 , 33, 2967-2973	5.5	92
477	Polyphenylene dendrimers with perylene diimide as a luminescent core. <i>Chemistry - A European Journal</i> , 2001 , 7, 4844-53	4.8	91
476	Metal-organic framework single crystals as photoactive matrices for the generation of metallic microstructures. <i>Advanced Materials</i> , 2011 , 23, 1788-91	24	90
475	Photoinduced electron transfer in a rigid first generation triphenylamine core dendrimer substituted with a peryleneimide acceptor. <i>Journal of the American Chemical Society</i> , 2002 , 124, 9918-2	5 ^{16.4}	90
474	Tunable Ratiometric Fluorescence Sensing of Intracellular pH by Aggregation-Induced Emission-Active Hyperbranched Polymer Nanoparticles. <i>Chemistry of Materials</i> , 2015 , 27, 3450-3455	9.6	89
473	Excited-State Dynamics in the Enhanced Green Fluorescent Protein Mutant Probed by Picosecond Time-Resolved Single Photon Counting Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 4999-5	5 6 045	89
472	Photoactivation of silver-exchanged zeolite A. Angewandte Chemie - International Edition, 2008, 47, 281	3 16 .4	88
471	High-throughput fabrication of organic nanowire devices with preferential internal alignment and improved performance. <i>Nano Letters</i> , 2007 , 7, 3639-44	11.5	87
470	Fluorescence Detection from Single Dendrimers with Multiple Chromophores. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 3752-3756	16.4	86
469	Fluorescence of single molecules in polymer films: sensitivity of blinking to local environment. Journal of Physical Chemistry B, 2007 , 111, 6987-91	3.4	85
468	Transfection of living HeLa cells with fluorescent poly-cytosine encapsulated Ag nanoclusters. <i>Photochemical and Photobiological Sciences</i> , 2010 , 9, 716-21	4.2	84

(2020-2001)

467	Intramolecular Energy Hopping in Polyphenylene Dendrimers with an Increasing Number of Peryleneimide Chromophores. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 3961-3966	2.8	84
466	Origin of the bright photoluminescence of few-atom silver clusters confined in LTA zeolites. <i>Science</i> , 2018 , 361, 686-690	33.3	83
465	Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores. Journal of the American Chemical Society, 2010 , 132, 5021-3	16.4	83
464	Photophysical study of a multi-chromophoric dendrimer by time-resolved fluorescence and femtosecond transient absorption spectroscopy. <i>Chemical Physics Letters</i> , 1999 , 304, 1-9	2.5	82
463	Optical mapping of DNA: single-molecule-based methods for mapping genomes. <i>Biopolymers</i> , 2011 , 95, 298-311	2.2	81
462	Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. <i>Chemistry and Biology</i> , 2011 , 18, 1241-51		79
461	Energy and Electron Transfer in Ethynylene Bridged Perylene Diimide Multichromophores. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 4861-4870	3.8	79
460	Edge stabilization in reduced-dimensional perovskites. <i>Nature Communications</i> , 2020 , 11, 170	17.4	79
459	Defocused Wide-field Imaging Unravels Structural and Temporal Heterogeneity in Complex Systems. <i>Advanced Materials</i> , 2009 , 21, 1079-1090	24	77
458	Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. <i>Photochemical and Photobiological Sciences</i> , 2006 , 5, 567	7- 1 6	75
457	High-resolution single-molecule fluorescence imaging of zeolite aggregates within real-life fluid catalytic cracking particles. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1836-40	16.4	74
456	C(sp3) Bond Activation by Perovskite Solar Photocatalyst Cell. ACS Energy Letters, 2019 , 4, 203-208	20.1	74
455	"Supertrap" at Work: Extremely Efficient Nonradiative Recombination Channels in MAPbI Perovskites Revealed by Luminescence Super-Resolution Imaging and Spectroscopy. <i>ACS Nano</i> , 2017 , 11, 5391-5404	16.7	73
454	DNA fluorocode: A single molecule, optical map of DNA with nanometre resolution. <i>Chemical Science</i> , 2010 , 1, 453	9.4	73
453	Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed. <i>Journal of the American Chemical Society</i> , 2005 , 127, 8977-84	16.4	73
452	Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup. <i>Review of Scientific Instruments</i> , 2014 , 85, 123115	1.7	71
451	Subsurface Defect Engineering in Single-Unit-Cell Bi2WO6 Monolayers Boosts Solar-Driven Photocatalytic Performance. <i>ACS Catalysis</i> , 2020 , 10, 1439-1443	13.1	71
450	Direct Z-Scheme Heterojunction of Semicoherent FAPbBr/BiWO Interface for Photoredox Reaction with Large Driving Force. <i>ACS Nano</i> , 2020 ,	16.7	70

449	Mesostructure of Evaporated Porphyrin Thin Films: Porphyrin Wheel Formation. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 10588-10598	3.4	70
448	Multichromophoric Dendrimers as Single-Photon Sources: A Single-Molecule Study. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 16686-16696	3.4	69
447	Green-to-red photoconvertible Dronpa mutant for multimodal super-resolution fluorescence microscopy. <i>ACS Nano</i> , 2014 , 8, 1664-73	16.7	68
446	Ultrafast excited-state dynamics of the photoswitchable protein Dronpa. <i>Journal of the American Chemical Society</i> , 2007 , 129, 4870-1	16.4	68
445	Higher-excited-state photophysical pathways in multichromophoric systems revealed by single-molecule fluorescence spectroscopy. <i>ChemPhysChem</i> , 2004 , 5, 1786-90	3.2	68
444	Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. <i>Nature</i> , 2018 , 561, 63-69	50.4	68
443	Radical polymerization tracked by single molecule spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 783-7	16.4	67
442	Detection of a Single Dendrimer Macromolecule with a Fluorescent Dihydropyrrolopyrroledione (DPP) Core Embedded in a Thin Polystyrene Polymer Film. <i>Macromolecules</i> , 1998 , 31, 4493-4497	5.5	66
441	Ring Formation in Evaporating Porphyrin Derivative Solutions. <i>Langmuir</i> , 1999 , 15, 3582-3588	4	66
440	Triplet states as non-radiative traps in multichromophoric entities: single molecule spectroscopy of an artificial and natural antenna system. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2001 , 57, 2093-107	4.4	65
439	Influence of Structural and Rotational Isomerism on the Triplet Blinking of Individual Dendrimer Molecules J.H. thanks the FWO for a post-doctoral fellowship. T.V. wishes to thank the I.W.T. for a doctoral fellowship. Financial support by the FWO, the DWTC (through IUAP-4-11), and the Flemish	16.4	64
438	Ministry of Education (through GOA/1/2001) is gratefully acknowledged. The EC (through TMR Synthesis and single enzyme activity of a clicked lipase-BSA hetero-dimer. Chemical Communications , 2006, 2012-4 Latterini is than. Angewandte Chemie - International Edition, 2001, 40, 4643-4648	5.8	63
437	The 2018 correlative microscopy techniques roadmap. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 4430	1031	63
436	Photoluminescence Blinking of Single-Crystal Methylammonium Lead Iodide Perovskite Nanorods Induced by Surface Traps. <i>ACS Omega</i> , 2016 , 1, 148-159	3.9	62
435	Synthesis and photophysics of core-substituted naphthalene diimides: fluorophores for single molecule applications. <i>Chemistry - an Asian Journal</i> , 2009 , 4, 1542-50	4.5	61
434	Reversible Optical Writing and Data Storage in an Anthracene-Loaded Metal-Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 2423-2427	16.4	61
433	Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy. <i>ChemPhysChem</i> , 2012 , 13, 973-81	3.2	60
432	Relating pore structure to activity at the subcrystal level for ZSM-5: an electron backscattering diffraction and fluorescence microscopy study. <i>Journal of the American Chemical Society</i> , 2008 , 130, 135	516- 4	60

(2008-2016)

431	Single Molecule Nanospectroscopy Visualizes Proton-Transfer Processes within a Zeolite Crystal. Journal of the American Chemical Society, 2016 , 138, 13586-13596	16.4	60	
430	Single-molecule conformations probe free volume in polymers. <i>Journal of the American Chemical Society</i> , 2004 , 126, 2296-7	16.4	59	
429	Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites. <i>Nature Communications</i> , 2019 , 10, 484	17.4	58	
428	Ryanodine receptor cluster fragmentation and redistribution in persistent atrial fibrillation enhance calcium release. <i>Cardiovascular Research</i> , 2015 , 108, 387-98	9.9	58	
427	Linking phospholipase mobility to activity by single-molecule wide-field microscopy. <i>ChemPhysChem</i> , 2009 , 10, 151-61	3.2	58	
426	Second-harmonic generation in GFP-like proteins. <i>Journal of the American Chemical Society</i> , 2008 , 130, 15713-9	16.4	58	
425	Fluorescence lifetimes and emission patterns probe the 3D orientation of the emitting chromophore in a multichromophoric system. <i>Journal of the American Chemical Society</i> , 2004 , 126, 1431	0 -9-4	58	
424	Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming. <i>Journal of the American Chemical Society</i> , 2015 , 137, 6559-68	16.4	57	
423	Do enzymes sleep and work?. Chemical Communications, 2006, 935-40	5.8	57	
422	Microscopic insight into non-radiative decay in perovskite semiconductors from temperature-dependent luminescence blinking. <i>Nature Communications</i> , 2019 , 10, 1698	17.4	56	
421	Single Layer vs Bilayer Graphene: A Comparative Study of the Effects of Oxygen Plasma Treatment on Their Electronic and Optical Properties. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16619-16624	3.8	56	
420	Photoluminescence intensity fluctuations and electric-field-induced photoluminescence quenching in individual nanoclusters of poly(phenylenevinylene). <i>ChemPhysChem</i> , 2003 , 4, 260-7	3.2	56	
419	Singlet-singlet annihilation in multichromophoric peryleneimide dendrimers, determined by fluorescence upconversion. <i>ChemPhysChem</i> , 2001 , 2, 49-55	3.2	56	
418	Aggregation Induced Enhancement of Linear and Nonlinear Optical Emission from a Hexaphenylene Derivative. <i>Advanced Functional Materials</i> , 2016 , 26, 8968-8977	15.6	56	
417	A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics. <i>Advanced Materials</i> , 2019 , 31, e1805580	24	55	
416	Hot Electron Tunneling of Metal-Insulator-COF Nanostructures for Efficient Hydrogen Production. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18290-18294	16.4	55	
415	Determination and Optimization of the Luminescence External Quantum Efficiency of Silver-Clusters Zeolite Composites. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 6998-7004	3.8	55	
414	Control of surface plasmon localization via self-assembly of silver nanoparticles along silver nanowires. <i>Journal of the American Chemical Society</i> , 2008 , 130, 17240-1	16.4	55	

413	Dynamic disorder and stepwise deactivation in a chymotrypsin catalyzed hydrolysis reaction. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15458-9	16.4	55
412	Reversible intramolecular electron transfer at the single-molecule level. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 4209-14	16.4	55
411	Silver Clusters in Zeolites: From Self-Assembly to Ground-Breaking Luminescent Properties. <i>Accounts of Chemical Research</i> , 2017 , 50, 2353-2361	24.3	54
410	Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions. <i>Nature Communications</i> , 2016 , 7, 13693	17.4	54
409	Tracking Structural Phase Transitions in Lead-Halide Perovskites by Means of Thermal Expansion. <i>Advanced Materials</i> , 2019 , 31, e1900521	24	53
408	Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy. <i>Nature Communications</i> , 2015 , 6, 6287	17.4	53
407	N Electroreduction to NH by Selenium Vacancy-Rich ReSe Catalysis at an Abrupt Interface. Angewandte Chemie - International Edition, 2020 , 59, 13320-13327	16.4	53
406	Exploration of single molecule events in a haloperoxidase and its biomimic: localization of halogenation activity. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13192-3	16.4	53
405	Emission properties of oxyluciferin and its derivatives in water: revealing the nature of the emissive species in firefly bioluminescence. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 2638-49	3.4	52
404	Exploration of Atmospheric Pressure Plasma Nanofilm Technology for Straightforward Bio-Active Coating Deposition: Enzymes, Plasmas and Polymers, an Elegant Synergy. <i>Plasma Processes and Polymers</i> , 2011 , 8, 965-974	3.4	52
403	Data storage based on photochromic and photoconvertible fluorescent proteins. <i>Journal of Biotechnology</i> , 2010 , 149, 289-98	3.7	52
402	Thermally activated LTA(Li)Ag zeolites with water-responsive photoluminescence properties. Journal of Materials Chemistry C, 2015 , 3, 11857-11867	7.1	51
401	The Origin of Heterogeneity of Polymer Dynamics near the Glass Temperature As Probed by Defocused Imaging. <i>Macromolecules</i> , 2011 , 44, 9703-9709	5.5	51
400	Measuring diffusion of lipid-like probes in artificial and natural membranes by raster image correlation spectroscopy (RICS): use of a commercial laser-scanning microscope with analog detection. <i>Langmuir</i> , 2009 , 25, 5209-18	4	51
399	Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids. <i>ACS Nano</i> , 2016 , 10, 2455-66	16.7	50
398	Dynamic disorder in single-enzyme experiments: facts and artifacts. ACS Nano, 2012, 6, 346-54	16.7	50
397	Direct evidence of high spatial localization of hot spots in surface-enhanced Raman scattering. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 9932-5	16.4	50
396	Molecular Association by the Radiation Pressure of a Focused Laser Beam: Fluorescence Characterization of Pyrene-Labeled PNIPAM. <i>Journal of the American Chemical Society</i> , 1997 , 119, 2741-	2742	50

(2016-2007)

395	Origin of simultaneous donor-acceptor emission in single molecules of peryleneimide-terrylenediimide labeled polyphenylene dendrimers. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 708-19	3.4	50	
394	Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron. <i>FEMS Microbiology Ecology</i> , 2008 , 64, 271-82	4.3	50	
393	Space- and Time-Resolved Visualization of Acid Catalysis in ZSM-5 Crystals by Fluorescence Microscopy. <i>Angewandte Chemie</i> , 2007 , 119, 1736-1739	3.6	49	
392	A surface-bound molecule that undergoes optically biased Brownian rotation. <i>Nature Nanotechnology</i> , 2014 , 9, 131-6	28.7	48	
391	Direct measurement of the end-to-end distance of individual polyfluorene polymer chains. <i>ChemPhysChem</i> , 2005 , 6, 2286-94	3.2	48	
390	Radical C-H alkylation of BODIPY dyes using potassium trifluoroborates or boronic acids. <i>Chemistry - A European Journal</i> , 2015 , 21, 12667-75	4.8	47	
389	Luminescence of oxyfluoride glasses co-doped with Ag nanoclusters and Yb3+ ions. <i>RSC Advances</i> , 2012 , 2, 1496-1501	3.7	47	
388	The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering. <i>Nucleic Acids Research</i> , 2011 , 39, 1310-25	20.1	47	
387	In situ observation of the emission characteristics of zeolite-hosted silver species during heat treatment. <i>ChemPhysChem</i> , 2010 , 11, 1627-31	3.2	47	
386	Excitation energy migration processes in cyclic porphyrin arrays probed by single molecule spectroscopy. <i>Journal of the American Chemical Society</i> , 2008 , 130, 1879-84	16.4	47	
385	Fluorescence microscopy: Bridging the phase gap in catalysis. <i>Catalysis Today</i> , 2007 , 126, 44-53	5.3	47	
384	Single-molecule spectroscopy selectively probes donor and acceptor chromophores in the phycobiliprotein allophycocyanin. <i>Biophysical Journal</i> , 2004 , 87, 2598-608	2.9	47	
383	Compartmental analysis of the fluorescence decay surface of the exciplex formation between 1-methylpyrene and triethylamine. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 9375-9381		47	
382	Measuring the Viscosity of the Escherichia coli Plasma Membrane Using Molecular Rotors. <i>Biophysical Journal</i> , 2016 , 111, 1528-1540	2.9	47	
381	The Persistence-Inducing Toxin HokB Forms Dynamic Pores That Cause ATP Leakage. <i>MBio</i> , 2018 , 9,	7.8	46	
380	In situ space- and time-resolved sorption kinetics of anionic dyes on individual LDH crystals. <i>ChemPhysChem</i> , 2005 , 6, 2295-9	3.2	46	
379	A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film. <i>Chemical Communications</i> , 2017 , 53, 5121-5124	5.8	45	
378	Direct Observation of Luminescent Silver Clusters Confined in Faujasite Zeolites. <i>ACS Nano</i> , 2016 , 10, 7604-11	16.7	45	

377	Fast and reversible photoswitching of the fluorescent protein dronpa as evidenced by fluorescence correlation spectroscopy. <i>Biophysical Journal</i> , 2006 , 91, L45-7	2.9	45
376	Electron transfer at the single-molecule level in a triphenylamine-perylene imide molecule. <i>ChemPhysChem</i> , 2005 , 6, 942-8	3.2	45
375	Intramolecular evolution from a locally excited state to an excimer-like state in a multichromophoric dendrimer evidenced by a femtosecond fluorescence upconversion study. <i>Chemical Physics Letters</i> , 1999 , 310, 73-78	2.5	45
374	Influence of lipid heterogeneity and phase behavior on phospholipase A2 action at the single molecule level. <i>Biophysical Journal</i> , 2010 , 98, 1873-82	2.9	44
373	Protein Immobilization Using Atmospheric-Pressure Dielectric-Barrier Discharges: A Route to a Straightforward Manufacture of Bioactive Films. <i>Plasma Processes and Polymers</i> , 2008 , 5, 186-191	3.4	44
372	Photoconversion in the red fluorescent protein from the sea anemone Entacmaea quadricolor: is cis-trans isomerization involved?. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6270-1	16.4	44
371	Single-molecule spectroscopy of a dendrimer-based host-guest system. <i>Chemistry - A European Journal</i> , 2001 , 7, 4126-33	4.8	44
370	Unraveling the fluorescence features of individual corrole NH tautomers. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 10695-703	2.8	43
369	Probing the influence of O2 on photoinduced reversible electron transfer in perylenediimide-triphenylamine-based dendrimers by single-molecule spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 6116-20	16.4	43
368	Methyltransferase-Directed Labeling of Biomolecules and its Applications. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5182-5200	16.4	42
367	Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry. <i>Nucleic Acids Research</i> , 2014 , 42, e50	20.1	42
366	Super-Resolution Reactivity Mapping of Nanostructured Catalyst Particles. <i>Angewandte Chemie</i> , 2009 , 121, 9449-9453	3.6	42
365	Delayed electron-hole pair recombination in iron(III)-oxo metal-organic frameworks. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 5044-7	3.6	41
364	Visualization of membrane rafts using a perylene monoimide derivative and fluorescence lifetime imaging. <i>Biophysical Journal</i> , 2007 , 93, 2877-91	2.9	41
363	Spatially Heterogeneous Dynamics in Polymer Glasses at Room Temperature Probed by Single Molecule Lifetime Fluctuations. <i>Macromolecules</i> , 2003 , 36, 7752-7758	5.5	41
362	Direct Laser Writing of 🛮 to ษ hase Transformation in Formamidinium Lead Iodide. <i>ACS Nano</i> , 2017 , 11, 8072-8083	16.7	40
361	Collective effects in individual oligomers of the red fluorescent coral protein DsRed. <i>Chemical Physics Letters</i> , 2001 , 336, 415-423	2.5	40
360	X-ray irradiation-induced formation of luminescent silver clusters in nanoporous matrices. <i>Chemical Communications</i> , 2014 , 50, 1350-2	5.8	39

(2007-2014)

359	Rationalizing inter- and intracrystal heterogeneities in dealuminated acid mordenite zeolites by stimulated Raman scattering microscopy correlated with super-resolution fluorescence microscopy. <i>ACS Nano</i> , 2014 , 8, 12650-9	16.7	39	
358	Local elongation of endothelial cell-anchored von Willebrand factor strings precedes ADAMTS13 protein-mediated proteolysis. <i>Journal of Biological Chemistry</i> , 2011 , 286, 36361-7	5.4	39	
357	Fluorescent perylene diimide rotaxanes: spectroscopic signatures of wheel-chromophore interactions. <i>Chemistry - A European Journal</i> , 2007 , 13, 1291-9	4.8	39	
356	Water-Soluble Monofunctional Perylene and Terrylene Dyes: Powerful Labels for Single-Enzyme Tracking. <i>Angewandte Chemie</i> , 2008 , 120, 3420-3423	3.6	39	
355	Diffraction-unlimited imaging: from pretty pictures to hard numbers. <i>Cell and Tissue Research</i> , 2015 , 360, 151-78	4.2	38	
354	Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis. <i>Critical Reviews in Microbiology</i> , 2014 , 40, 207-24	7.8	38	
353	Photocatalytic growth of dendritic silver nanostructures as SERS substrates. <i>Chemical Communications</i> , 2012 , 48, 1559-61	5.8	38	
352	Influence of processing on the pectin structurefunction relationship in broccoli purë. <i>Innovative Food Science and Emerging Technologies</i> , 2012 , 15, 57-65	6.8	38	
351	Higher resolution in localization microscopy by slower switching of a photochromic protein. <i>Photochemical and Photobiological Sciences</i> , 2010 , 9, 239-48	4.2	38	
350	Theory of time-resolved single-molecule fluorescence spectroscopy. <i>Chemical Physics Letters</i> , 2000 , 318, 325-332	2.5	38	
349	The BOPHY fluorophore with double boron chelation: Synthesis and spectroscopy. <i>Coordination Chemistry Reviews</i> , 2018 , 371, 1-10	23.2	38	
348	Confocal imaging with a fluorescent bile acid analogue closely mimicking hepatic taurocholate disposition. <i>Journal of Pharmaceutical Sciences</i> , 2014 , 103, 1872-81	3.9	37	
347	Towards direct monitoring of discrete events in a catalytic cycle at the single molecule level. <i>Photochemical and Photobiological Sciences</i> , 2009 , 8, 453-6	4.2	37	
346	Photoinduced electron-transfer in perylenediimide triphenylamine-based dendrimers: single photon timing and femtosecond transient absorption spectroscopy. <i>Photochemical and Photobiological Sciences</i> , 2008 , 7, 597-604	4.2	37	
345	CT-CT annihilation in rigid perylene end-capped pentaphenylenes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 610-9	16.4	36	
344	Phase Transitions and Anion Exchange in All-Inorganic Halide Perovskites. <i>Accounts of Materials Research</i> , 2020 , 1, 3-15	7.5	36	
343	Molecular organization of hydrophobic molecules and co-adsorbed water in SBA-15 ordered mesoporous silica material. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 2706-13	3.6	35	
342	Single-molecule spectroscopic investigation of energy migration processes in cyclic porphyrin arrays. <i>Journal of the American Chemical Society</i> , 2007 , 129, 3539-44	16.4	35	

341	Excited state relaxation channels of liquid-crystalline cyanobiphenyls and a ring-bridged model compound. Comparison of bulk and dilute solution properties. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1995 , 85, 11-21	4.7	35
340	Controlling Microsized Polymorphic Architectures with Distinct Linear and Nonlinear Optical Properties. <i>Advanced Optical Materials</i> , 2015 , 3, 948-956	8.1	34
339	Energy transfer pathways in a rylene-based Triad. ChemPhysChem, 2011, 12, 595-608	3.2	34
338	Focusing plasmons in nanoslits for surface-enhanced Raman scattering. <i>Small</i> , 2009 , 5, 2876-82	11	34
337	Generation-Dependent Energy Dissipation in Rigid Dendrimers Studied by Femtosecond to Nanosecond Time-Resolved Fluorescence Spectroscopy [] Journal of Physical Chemistry A, 2002, 106, 208	3 -2 090	o 34
336	Emission of the contact ion pair of rhodamine dyes observed by single molecule spectroscopy. <i>Chemical Physics Letters</i> , 2000 , 321, 372-378	2.5	34
335	Tuning the Structural and Optoelectronic Properties of Cs AgBiBr Double-Perovskite Single Crystals through Alkali-Metal Substitution. <i>Advanced Materials</i> , 2020 , 32, e2001878	24	34
334	Photochromic Reaction by Red Light via Triplet Fusion Upconversion. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17744-17753	16.4	33
333	Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams. <i>Optics Express</i> , 2007 , 15, 3372-83	3.3	33
332	Single molecule spectroscopy as a probe for dye-polymer interactions. <i>Journal of the American Chemical Society</i> , 2005 , 127, 12011-20	16.4	33
331	Switching of the fluorescence emission of single molecules between the locally excited and charge transfer states. <i>Chemical Physics Letters</i> , 2005 , 401, 503-508	2.5	33
330	New OLEDs Based on Zirconium Metal-Organic Framework. <i>Advanced Optical Materials</i> , 2018 , 6, 17010	68 .1	32
329	Resonance energy transfer in a calcium concentration-dependent cameleon protein. <i>Biophysical Journal</i> , 2002 , 83, 3499-506	2.9	32
328	Fluoreszenzuntersuchungen einzelner Dendrimermolekle mit mehreren Chromophoren. <i>Angewandte Chemie</i> , 1999 , 111, 3970-3974	3.6	32
327	Atomic scale reversible opto-structural switching of few atom luminescent silver clusters confined in LTA zeolites. <i>Nanoscale</i> , 2018 , 10, 11467-11476	7.7	31
326	Role of Electron P honon Coupling in the Thermal Evolution of Bulk Rashba-Like Spin-Split Lead Halide Perovskites Exhibiting Dual-Band Photoluminescence. <i>ACS Energy Letters</i> , 2019 , 4, 2205-2212	20.1	31
325	Fluorescence-based analysis of enzymes at the single-molecule level. <i>Biotechnology Journal</i> , 2009 , 4, 465-79	5.6	31
324	Diffraction-unlimited optical microscopy. <i>Materials Today</i> , 2008 , 11, 12-21	21.8	30

323	Shear-stress-induced conformational changes of von Willebrand factor in a water-glycerol mixture observed with single molecule microscopy. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 5660-9	3.4	29	
322	Three-Dimensional Visualization of Defects Formed during the Synthesis of Metal©rganic Frameworks: A Fluorescence Microscopy Study. <i>Angewandte Chemie</i> , 2013 , 125, 419-423	3.6	29	
321	3D nanoscopy: bringing biological nanostructures into sharp focus. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 8330-2	16.4	29	
320	Influence of Carbon Nanoparticle Addition (and Impurities) on Selective Laser Melting of Pure Copper. <i>Materials</i> , 2019 , 12,	3.5	28	
319	High-Resolution Single-Turnover Mapping Reveals Intraparticle Diffusion Limitation in Ti-MCM-41-Catalyzed Epoxidation. <i>Angewandte Chemie</i> , 2010 , 122, 920-923	3.6	28	
318	Static and dynamic bimolecular fluorescence quenching of porphyrin dendrimers in solution. <i>Journal of Fluorescence</i> , 2008 , 18, 821-6	2.4	28	
317	Fabrication of fluorescent nanoparticles of dendronized perylenediimide by laser ablation in water. <i>Applied Physics A: Materials Science and Processing</i> , 2008 , 93, 5-9	2.6	28	
316	The beneficial effect of CO2 in the low temperature synthesis of high quality carbon nanofibers and thin multiwalled carbon nanotubes from CH4 over Ni catalysts. <i>Carbon</i> , 2012 , 50, 372-384	10.4	27	
315	Synthesis, Ensemble, and Single Molecule Characterization of a Diphenyl-Acetylene Linked Perylenediimide Trimer <i>Journal of Physical Chemistry C</i> , 2009 , 113, 11773-11782	3.8	27	
314	The influence of diffusion phenomena on catalysis: A study at the single particle level using fluorescence microscopy. <i>Catalysis Today</i> , 2010 , 157, 236-242	5.3	27	
313	Inhomogeneity of electron injection rates in dye-sensitized TiO2: comparison of the mesoporous film and single nanoparticle behavior. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 25314-21	3.4	27	
312	Correlation between Ground State Conformation and Excited State Dynamics in a Multichromophoric Dendrimer Studied by Excitation Wavelength Dependent Fluorescence Upconversion. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 9378-9381	3.4	27	
311	Three-Phase Boundary in Cross-Coupled Micro-Mesoporous Networks Enabling 3D-Printed and Ionogel-Based Quasi-Solid-State Micro-Supercapacitors. <i>Advanced Materials</i> , 2020 , 32, e2002474	24	27	
310	Plasmon-Mediated Surface Engineering of Silver Nanowires for Surface-Enhanced Raman Scattering. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 2774-2779	6.4	26	
309	Evaluation of Direct Grafting Strategies Trivalent Anchoring for Enabling Lipid Membrane and Cytoskeleton Staining in Expansion Microscopy. <i>ACS Nano</i> , 2020 , 14, 7860-7867	16.7	26	
308	In situ pectin engineering as a tool to tailor the consistency and syneresis of carrot purð. <i>Food Chemistry</i> , 2012 , 133, 146-155	8.5	26	
307	Nanoscale Study of Polymer Dynamics. ACS Nano, 2016, 10, 1434-41	16.7	25	
306	Ensemble and single particle fluorimetric techniques in concerted action to study the diffusion and aggregation of the glycine receptor B isoforms in the cell plasma membrane. Biochimica Et	3.8	25	

305	Merging of Hard Spheres by Phototriggered Micromanipulation. <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 1710-1714	16.4	25
304	Radical C?H Arylation of the BODIPY Core with Aryldiazonium Salts: Synthesis of Highly Fluorescent Red-Shifted Dyes. <i>Angewandte Chemie</i> , 2015 , 127, 4695-4699	3.6	24
303	Capsid-Labelled HIV To Investigate the Role of Capsid during Nuclear Import and Integration. Journal of Virology, 2020 , 94,	6.6	24
302	Dynamic Oligomerization of Integrase Orchestrates HIV Nuclear Entry. <i>Scientific Reports</i> , 2016 , 6, 36485	54.9	24
301	Environmental dissolved organic matter governs biofilm formation and subsequent linuron degradation activity of a linuron-degrading bacterial consortium. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 4534-42	4.8	24
300	Light-assisted nucleation of silver nanowires during polyol synthesis. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2011 , 221, 220-223	4.7	24
299	Challenges and Opportunities for CsPbBr3 Perovskites in Low- and High-Energy Radiation Detection. <i>ACS Energy Letters</i> , 2021 , 6, 1290-1314	20.1	24
298	Analysis of alpha3 GlyR single particle tracking in the cell membrane. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2014 , 1843, 544-53	4.9	23
297	Combing of genomic DNA from droplets containing picograms of material. ACS Nano, 2015, 9, 809-16	16.7	23
296	Fluorescent oxygen sensitive microbead incorporation for measuring oxygen tension in cell aggregates. <i>Biomaterials</i> , 2013 , 34, 922-9	15.6	23
295	Single-Enzyme Kinetics of CALB-Catalyzed Hydrolysis. <i>Angewandte Chemie</i> , 2005 , 117, 566-570	3.6	23
294	Mechanical and optical manipulation of porphyrin rings at the submicrometre scale. <i>Nanotechnology</i> , 2000 , 11, 16-23	3.4	23
293	Solvent dynamics and intramolecular charge transfer in4-Cyano-4?-butyloxybiphenyl (4COB) <i>Tetrahedron</i> , 1989 , 45, 4693-4706	2.4	23
292	Imaging Heterogeneously Distributed Photo-Active Traps in Perovskite Single Crystals. <i>Advanced Materials</i> , 2018 , 30, e1705494	24	22
291	Monitoring the interaction of a single G-protein key binding site with rhodopsin disk membranes upon light activation. <i>Biochemistry</i> , 2009 , 48, 3801-3	3.2	22
290	Conformational characterization from modulated single molecule fluorescence intensity traces. <i>Chemical Physics Letters</i> , 2002 , 362, 534-540	2.5	22
289	Transmission and Confocal Fluorescence Microscopy and Time-Resolved Fluorescence Spectroscopy Combined with a Laser Trap: Investigation of Optically Trapped Block Copolymer Micelles. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 8440-8451	3.4	22
288	Defocused Imaging of UV-Driven Surface-Bound Molecular Motors. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7156-7159	16.4	21

(2015-2015)

287	High-Resolution Single-Molecule Fluorescence Imaging of Zeolite Aggregates within Real-Life Fluid Catalytic Cracking Particles. <i>Angewandte Chemie</i> , 2015 , 127, 1856-1860	3.6	21
286	Physical Properties of Nutritive Shortenings Produced from Regioselective Hardening of Soybean Oil with Pt Containing Zeolite. <i>JAOCS, Journal of the American Oil Chemistsj Society</i> , 2011 , 88, 2023-2034	1 .8	21
285	Basic Principles of Fluorescence Spectroscopy 2011 , 1-30		21
284	SOFI Simulation Tool: A Software Package for Simulating and Testing Super-Resolution Optical Fluctuation Imaging. <i>PLoS ONE</i> , 2016 , 11, e0161602	3.7	21
283	Topochemistry-Driven Synthesis of Transition-Metal Selenides with Weakened Van Der Waals Force to Enable 3D-Printed Na-Ion Hybrid Capacitors. <i>Advanced Functional Materials</i> , 2022 , 32, 2110016	15.6	21
282	Acid-Sensitive BODIPY Dyes: Synthesis through Pd-Catalyzed Direct C(sp)-H Arylation and Photophysics. <i>Chemistry - A European Journal</i> , 2017 , 23, 4687-4699	4.8	20
281	Reshaping anisotropic gold nanoparticles through oxidative etching: the role of the surfactant and nanoparticle surface curvature. <i>RSC Advances</i> , 2015 , 5, 6829-6833	3.7	20
280	A nucleotide-switch mechanism mediates opposing catalytic activities of Rel enzymes. <i>Nature Chemical Biology</i> , 2020 , 16, 834-840	11.7	20
279	Form Follows Function: Warming White LEDs Using Metal Cluster-Loaded Zeolites as Phosphors. <i>ACS Energy Letters</i> , 2017 , 2, 2491-2497	20.1	20
278	Estimation of the effective phase function of bulk diffusing materials with the inverse adding-doubling method. <i>Applied Optics</i> , 2014 , 53, 2117-25	1.7	20
277	Exposure to solute stress affects genome-wide expression but not the polycyclic aromatic hydrocarbon-degrading activity of Sphingomonas sp. strain LH128 in biofilms. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 8311-20	4.8	20
276	Formation of vesicles in block copolymer-fluorinated surfactant complexes. <i>Langmuir</i> , 2007 , 23, 116-22	4	20
275	The Photo Physical Properties of Dendrimers Containing 1,4-Dioxo-3,6-Diphenylpyrrolo[3,4-c]pyrrole (DPP) as a Core. <i>Macromolecular Chemistry and Physics</i> , 2005 , 206, 25-32	2.6	20
274	The pH-dependent photoluminescence of colloidal CdSe/ZnS quantum dots with different organic coatings. <i>Nanotechnology</i> , 2015 , 26, 255703	3.4	19
273	Resolving Interparticle Heterogeneities in Composition and Hydrogenation Performance between Individual Supported Silver on Silica Catalysts. <i>ACS Catalysis</i> , 2015 , 5, 6690-6695	13.1	19
272	Phosphorylation decelerates conformational dynamics in bacterial translation elongation factors. <i>Science Advances</i> , 2018 , 4, eaap9714	14.3	19
271	Synthesis and in vitro evaluation of a PDT active BODIPY-NLS conjugate. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2013 , 23, 3204-7	2.9	19
270	Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM. <i>Scientific Reports</i> , 2015 , 5, 13532	4.9	19

269	Oxyfluoride glass (SiO_2-PbF_2) co-doped with Ag nanoclusters and Tm^3+ ions for UV-driven, Hg-free, white light generation with a tuneable tint. <i>Optical Materials Express</i> , 2014 , 4, 1227	2.6	19
268	Excitation energy transfer in dendritic host-guest donor-acceptor systems. <i>ChemPhysChem</i> , 2002 , 3, 10	0 5 .:13	19
267	Synthesis of and excited state processes in multichromophoric dendritic systems. <i>Journal of Luminescence</i> , 2005 , 111, 239-253	3.8	19
266	Nanometer space resolved photochemistry. <i>Chemical Communications</i> , 2001 , 585-592	5.8	19
265	Inhibition of Receptor Dimerization as a Novel Negative Feedback Mechanism of EGFR Signaling. <i>PLoS ONE</i> , 2015 , 10, e0139971	3.7	19
264	Incorporation of Cesium Lead Halide Perovskites into g-CN for Photocatalytic CO Reduction. <i>ACS Omega</i> , 2020 , 5, 24495-24503	3.9	19
263	Effect of the substitution position (2, 3 or 8) on the spectroscopic and photophysical properties of BODIPY dyes with a phenyl, styryl or phenylethynyl group. <i>RSC Advances</i> , 2016 , 6, 102899-102913	3.7	18
262	Biofilm formation of a bacterial consortium on linuron at micropollutant concentrations in continuous flow chambers and the impact of dissolved organic matter. <i>FEMS Microbiology Ecology</i> , 2014 , 88, 184-94	4.3	18
261	Revealing the excited-state dynamics of the fluorescent protein Dendra2. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 2300-13	3.4	18
260	Extended adding-doubling method for fluorescent applications. <i>Optics Express</i> , 2012 , 20, 17856-72	3.3	18
259	How Is cis-trans Isomerization Controlled in Dronpa Mutants? A Replica Exchange Molecular Dynamics Study. <i>Journal of Chemical Theory and Computation</i> , 2008 , 4, 1012-20	6.4	18
258	Superconducting Ferromagnetic Nanodiamond. <i>ACS Nano</i> , 2017 , 11, 5358-5366	16.7	17
257	Hot Electron Tunneling of Metal [hsulator [IOF Nanostructures for Efficient Hydrogen Production. <i>Angewandte Chemie</i> , 2019 , 131, 18458-18462	3.6	17
256	Click Reaction Synthesis and Photophysical Studies of Dendritic Metalloporphyrins. <i>European Journal of Organic Chemistry</i> , 2014 , 2014, 1766-1777	3.2	17
255	Excitation polarization sensitivity of plasmon-mediated silver nanotriangle growth on a surface. <i>Langmuir</i> , 2012 , 28, 8920-5	4	17
254	Accelerating the Phase Separation in Aqueous Poly(N-isopropylacrylamide) Solutions by Slight Modification of the Polymer Stereoregularity: A Single Molecule Fluorescence Study. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 10818-10824	3.8	17
253	Use of Dual Marker Transposons to Identify New Symbiosis Genes in Rhizobium. <i>Microbial Ecology</i> , 2001 , 41, 325-332	4.4	17
252	Polarisation Sensitive Single Molecule Fluorescence Detection with Linear Polarised Excitation Light and Modulated Polarisation Direction Applied to Multichromophoric Entities. <i>Single Molecules</i>		17

251	Laser Induced Phase Transition in Aqueous Solutions of Hydrophobically Modified Poly(N-Isopropylacrylamide). <i>Molecular Crystals and Liquid Crystals</i> , 1996 , 283, 165-172		17	
250	Unprecedented ∃substituted BOPHY dyes via a key 3,8-dichloroBOPHY intermediate. <i>Dyes and Pigments</i> , 2017 , 142, 249-254	4.6	16	
249	Methyltransferase-directed covalent coupling of fluorophores to DNA. Chemical Science, 2017, 8, 3804	-38.41	16	
248	Chemoenzymatic synthesis and utilization of a SAM analog with an isomorphic nucleobase. <i>Organic and Biomolecular Chemistry</i> , 2016 , 14, 6189-92	3.9	16	
247	Shaping the Optical Properties of Silver Clusters Inside Zeolite A via Guest-Host-Guest Interactions. Journal of Physical Chemistry Letters, 2018 , 9, 5344-5350	6.4	16	
246	Membrane distribution of the glycine receptor B studied by optical super-resolution microscopy. <i>Histochemistry and Cell Biology</i> , 2014 , 142, 79-90	2.4	16	
245	Thermocapillary fingering in surfactant-laden water droplets. <i>Langmuir</i> , 2014 , 30, 13338-44	4	16	
244	Lead silicate glass SiO2 P bF2 doped with luminescent Ag nanoclusters of a fixed site. <i>RSC Advances</i> , 2014 , 4, 20699	3.7	16	
243	Determination of the bulk scattering parameters of diffusing materials. <i>Applied Optics</i> , 2013 , 52, 4083-	90 .7	16	
242	Unraveling excited-state dynamics in a polyfluorene-perylenediimide copolymer. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 1277-86	3.4	16	
241	Size-Dependent Optical Properties of Dendronized Perylenediimide Nanoparticle Prepared by Laser Ablation in Water. <i>Japanese Journal of Applied Physics</i> , 2009 , 48, 065002	1.4	16	
240	Aggregatibacter actinomycetemcomitans adhesion inhibited in a flow cell. <i>Oral Microbiology and Immunology</i> , 2008 , 23, 520-4		16	
239	Diffusion of myelin oligodendrocyte glycoprotein in living OLN-93 cells investigated by raster-scanning image correlation spectroscopy (RICS). <i>Journal of Fluorescence</i> , 2008 , 18, 813-9	2.4	16	
238	Highly luminescent silver-based MOFs: Scalable eco-friendly synthesis paving the way for photonics sensors and electroluminescent devices. <i>Applied Materials Today</i> , 2020 , 21, 100817	6.6	16	
237	Decorating the Edges of a 2D Polymer with a Fluorescence Label. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8976-81	16.4	16	
236	Facile Morphology-Controlled Synthesis of Organolead Iodide Perovskite Nanocrystals Using Binary Capping Agents. <i>ChemNanoMat</i> , 2017 , 3, 223-227	3.5	15	
235	Surface Colonization and Activity of the 2,6-Dichlorobenzamide (BAM) Degrading Aminobacter sp. Strain MSH1 at Macro- and Micropollutant BAM Concentrations. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 10123-33	10.3	15	
234	Time-resolved single molecule fluorescence spectroscopy of an £hymotrypsin catalyzed reaction. Journal of Physical Chemistry B, 2013 , 117, 1252-60	3.4	15	

233	A non-invasive fluorescent staining procedure allows Confocal Laser Scanning Microscopy based imaging of Mycobacterium in multispecies biofilms colonizing and degrading polycyclic aromatic hydrocarbons. <i>Journal of Microbiological Methods</i> , 2010 , 83, 317-25	2.8	15
232	Improved method for counting DNA molecules on biofunctionalized nanoparticles. <i>Langmuir</i> , 2010 , 26, 1594-7	4	15
231	Single perylene diimide dendrimers as single-photon sources. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 445004	1.8	15
230	Charge transfer enhanced annihilation leading to deterministic single photon emission in rigid perylene end-capped polyphenylenes. <i>Chemical Communications</i> , 2005 , 4973-5	5.8	15
229	Accurate modeling of a biological nanopore with an extended continuum framework. <i>Nanoscale</i> , 2020 , 12, 16775-16795	7.7	15
228	Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 4259-4268	7.1	15
227	Structural and Photophysical Characterization of Ag Clusters in LTA Zeolites. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 10630-10638	3.8	14
226	Electroluminescent Guest@MOF Nanoparticles for Thin Film Optoelectronics and Solid-State Lighting. <i>Advanced Optical Materials</i> , 2020 , 8, 2000670	8.1	14
225	Confinement of Highly Luminescent Lead Clusters in Zeolite A. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13953-13961	3.8	14
224	Single-Step Synthesis of Dual Phase Bright Blue-Green Emitting Lead Halide Perovskite Nanocrystal Thin Films. <i>Chemistry of Materials</i> , 2019 , 31, 6824-6832	9.6	14
223	Bosonic Confinement and Coherence in Disordered Nanodiamond Arrays. ACS Nano, 2017, 11, 11746-11	171547	14
222	Spectroscopic properties, excitation, and electron transfer in an anionic water-soluble poly(fluorene-alt-phenylene)-perylenediimide copolymer. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 7548-59	3.4	14
221	Silver Nanowires Terminated by Metallic Nanoparticles as Effective Plasmonic Antennas. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 2547-2553	3.8	14
220	Morpholinecarbonyl-Rhodamine 110 based substrates for the determination of protease activity with accurate kinetic parameters. <i>Bioconjugate Chemistry</i> , 2011 , 22, 1932-8	6.3	14
219	Photoactivation of Silver-Exchanged Zeolite A. <i>Angewandte Chemie</i> , 2008 , 120, 2855-2858	3.6	14
218	Influence of Structural and Rotational Isomerism on the Triplet Blinking of Individual Dendrimer Molecules. <i>Angewandte Chemie</i> , 2001 , 113, 4779-4784	3.6	14
217	Reversible and Site-Dependent Proton-Transfer in Zeolites Uncovered at the Single-Molecule Level. Journal of the American Chemical Society, 2018 , 140, 14195-14205	16.4	14
216	Highly Mobile Large Polarons in Black Phase CsPbI3. ACS Energy Letters, 2021, 6, 568-573	20.1	14

215	Energy-Efficient Ammonia Production from Air and Water Using Electrocatalysts with Limited Faradaic Efficiency. <i>ACS Energy Letters</i> , 2020 , 5, 1124-1127	20.1	13
214	Improved HaloTag Ligand Enables BRET Imaging With NanoLuc. Frontiers in Chemistry, 2019 , 7, 938	5	13
213	Fluorescence modulation by fast photochromism of a [2.2]paracyclophane-bridged imidazole dimer possessing a perylene bisimide moiety. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 9523-9531	7.1	13
212	Photoswitchable fluorescent proteins for superresolution fluorescence microscopy circumventing the diffraction limit of light. <i>Methods in Molecular Biology</i> , 2014 , 1076, 793-812	1.4	13
211	Fabrication of silver nanoparticles with limited size distribution on TiO2 containing zeolites. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 18690-3	3.6	13
210	Effect of microstructure on population growth parameters of Escherichia coli in gelatin-dextran systems. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 5330-9	4.8	13
209	Excited state dynamics of photoswitchable fluorescent protein Padron. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 16422-7	3.4	13
208	Behavior of Escherichia coli in a heterogeneous gelatin-dextran mixture. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 3126-8	4.8	13
207	Verfolgung der radikalischen Polymerisation mit Einzelmolekßpektroskopie. <i>Angewandte Chemie</i> , 2008 , 120, 795-799	3.6	13
206	A new analysis method of single molecule fluorescence using series of photon arrival times: theory and experiment. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2001 , 57, 2109-	·3 3 ·4	13
205	Evaluation of Blue and Far-Red Dye Pairs in Single-Molecule FEster Resonance Energy Transfer Experiments. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 4249-4266	3.4	12
204	Electrochemistry: Photocatalysts in close-up. <i>Nature</i> , 2016 , 530, 36-7	50.4	12
203	High-throughput time-resolved morphology screening in bacteria reveals phenotypic responses to antibiotics. <i>Communications Biology</i> , 2019 , 2, 269	6.7	12
202	Selective photocatalytic oxidation of gaseous ammonia to dinitrogen in a continuous flow reactor. <i>Catalysis Science and Technology</i> , 2012 , 2, 1802	5.5	12
201	On the use of Z-scan fluorescence correlation experiments on giant unilamellar vesicles. <i>Chemical Physics Letters</i> , 2009 , 469, 110-114	2.5	12
200	Single molecule fluorescence spectroscopy of pH sensitive oligonucleotide switches. <i>Photochemical and Photobiological Sciences</i> , 2007 , 6, 614-8	4.2	12
199	Fast-tracking of single emitters in large volumes with nanometer precision. <i>Optics Express</i> , 2020 , 28, 28	36 <u>5</u> .6-28	86721
198	Self-Assembling Azaindole Organogel for Organic Light-Emitting Devices (OLEDs). <i>Advanced Functional Materials</i> , 2017 , 27, 1702176	15.6	12

197	Genetic (In)stability of 2,6-Dichlorobenzamide Catabolism in Aminobacter sp. Strain MSH1 Biofilms under Carbon Starvation Conditions. <i>Applied and Environmental Microbiology</i> , 2017 , 83,	4.8	11
196	Facet-Dependent Diol-Induced Density of States of Anatase TiO Crystal Surface. <i>ACS Omega</i> , 2017 , 2, 4032-4038	3.9	11
195	Fluorescence lifetime fluctuations of single molecules probe the local environment of oligomers around the glass transition temperature. <i>Journal of Chemical Physics</i> , 2007 , 126, 184902	3.9	11
194	Single Photon Emission from a Dendrimer Containing Eight Perylene Diimide Chromophores. <i>Australian Journal of Chemistry</i> , 2004 , 57, 1169	1.2	11
193	Assessing Photocatalytic Activity at the Nanoscale Using Integrated Optical and Electron Microscopy. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 412-418	3.1	11
192	The bionic sunflower: a bio-inspired autonomous light tracking photocatalytic system. <i>Energy and Environmental Science</i> , 2021 , 14, 3931-3937	35.4	11
191	Light- and Temperature-Modulated Magneto-Transport in OrganicIhorganic Lead Halide Perovskites. <i>ACS Energy Letters</i> , 2018 , 3, 39-45	20.1	11
190	Die Methyltransferase-gesteuerte Markierung von Biomoleklen und ihre Anwendungen. <i>Angewandte Chemie</i> , 2017 , 129, 5266-5285	3.6	10
189	Silver Zeolite Composite-Based LEDs: Origin of Electroluminescence and Charge Transport. <i>ACS Applied Materials & District Materials & </i>	9.5	10
188	Fluorescence Photobleaching as an Intrinsic Tool to Quantify the 3D Expansion Factor of Biological Samples in Expansion Microscopy. <i>ACS Omega</i> , 2020 , 5, 6792-6799	3.9	10
187	N2 Electroreduction to NH3 by Selenium Vacancy-Rich ReSe2 Catalysis at an Abrupt Interface. <i>Angewandte Chemie</i> , 2020 , 132, 13422-13429	3.6	10
186	Dynamic Coupling of Optically Evolved Assembling and Swarming of Gold Nanoparticles with Photothermal Local Phase Separation of Polymer Solution. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 16604-16615	3.8	10
185	Highly Photoluminescent Sulfide Clusters Confined in Zeolites. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 14761-14770	3.8	10
184	Excited state dynamics of the photoconvertible fluorescent protein Kaede revealed by ultrafast spectroscopy. <i>Photochemical and Photobiological Sciences</i> , 2014 , 13, 867-74	4.2	10
183	Membrane remodeling processes induced by phospholipase action. <i>Langmuir</i> , 2014 , 30, 4743-51	4	10
182	Fluorescence Correlation Spectroscopy in Dilute Polymer Solutions: Effects of Molar Mass Dispersity and the Type of Fluorescent Labeling. <i>ACS Macro Letters</i> , 2015 , 4, 171-176	6.6	10
181	The quantity and quality of dissolved organic matter as supplementary carbon source impacts the pesticide-degrading activity of a triple-species bacterial biofilm. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 931-43	5.7	10
180	Response to mixed substrate feeds of the structure and activity of a linuron-degrading triple-species biofilm. <i>Research in Microbiology</i> , 2010 , 161, 660-6	4	10

(2014-2008)

179	Nano-patterned layers of a grafted coumarinic chromophore. <i>Photochemical and Photobiological Sciences</i> , 2008 , 7, 460-6	4.2	10
178	Surface plasmon resonance effect on laser trapping and swarming of gold nanoparticles at an interface. <i>Optics Express</i> , 2020 , 28, 27727-27735	3.3	10
177	A causal relation between bioluminescence and oxygen to quantify the cell niche. <i>PLoS ONE</i> , 2014 , 9, e97572	3.7	10
176	A general strategy for direct, enzyme-catalyzed conjugation of functional compounds to DNA. <i>Nucleic Acids Research</i> , 2018 , 46, e64	20.1	9
175	Spectroscopic characterization of Venus at the single molecule level. <i>Photochemical and Photobiological Sciences</i> , 2012 , 11, 358-63	4.2	9
174	Reversible Intramolecular Electron Transfer at the Single-Molecule Level. <i>Angewandte Chemie</i> , 2003 , 115, 4341-4346	3.6	9
173	Microscopy and optical manipulation of dendrimer-built vesicles. <i>Pure and Applied Chemistry</i> , 2001 , 73, 435-441	2.1	9
172	Efficient Photocatalytic CO2 Reduction with MIL-100(Fe)-CsPbBr3 Composites. <i>Catalysts</i> , 2020 , 10, 135	24	9
171	PSF Distortion in DyePlasmonic Nanomaterial Interactions: Friend or Foe?. ACS Photonics, 2019, 6, 699-7	76 83	9
170	5,10-Dihydrobenzo[a]indolo[2,3- c]carbazoles as Novel OLED Emitters. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 1400-1411	3.4	9
169	Promoting Photocatalytic Hydrogen Evolution Activity of Graphitic Carbon Nitride with Hole-Transfer Agents. <i>ChemSusChem</i> , 2021 , 14, 306-312	8.3	9
168	Texture Formation in Polycrystalline Thin Films of All-Inorganic Lead Halide Perovskite. <i>Advanced Materials</i> , 2021 , 33, e2007224	24	9
167	Planar Heterojunction Boosts Solar-Driven Photocatalytic Performance and Stability of Halide Perovskite Solar Photocatalyst Cell. <i>Applied Catalysis B: Environmental</i> , 2021 , 120760	21.8	9
166	Molecular Dynamic Indicators of the Photoswitching Properties of Green Fluorescent Proteins. Journal of Physical Chemistry B, 2015 , 119, 12007-16	3.4	8
165	Mechanism Behind the Apparent Large Stokes Shift in LSSmOrange Investigated by Time-Resolved Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 14880-91	3.4	8
164	Fluorescent SAM analogues for methyltransferase based DNA labeling. <i>Chemical Communications</i> , 2020 , 56, 3317-3320	5.8	8
163	Photoconversion of Far-Red Organic Dyes: Implications for Multicolor Super-Resolution Imaging. <i>ChemPhotoChem</i> , 2018 , 2, 433-441	3.3	8
162	HIV virions as nanoscopic test tubes for probing oligomerization of the integrase enzyme. <i>ACS Nano</i> , 2014 , 8, 3531-45	16.7	8

161	The Escherichia coli GTPase ObgE modulates hydroxyl radical levels in response to DNA replication fork arrest. <i>FEBS Journal</i> , 2012 , 279, 3692-3704	7	8
160	Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering. Angewandte Chemie, 2009 , 121, 10116-10119	.6	8
159	Complexation of lipofectamine and cholesterol-modified DNA sequences studied by single-molecule fluorescence techniques. <i>Biomacromolecules</i> , 2007 , 8, 3382-92	.9	8
158	The fabrication of a thin, circular polymer film based phase shaper for generating doughnut modes. Optics Express, 2006, 14, 6273-8	.3	8
157	Correctly validating results from single molecule data: The case of stretched exponential decay in the catalytic activity of single lipase B molecules. <i>Chemical Physics Letters</i> , 2006 , 432, 371-374	.5	8
156	Probing the Influence of O2 on Photoinduced Reversible Electron Transfer in Perylenediimide T riphenylamine-Based Dendrimers by Single-Molecule Spectroscopy. <i>Angewandte Shemie</i> , 2004 , 116, 6242-6246	.6	8
155	Formation and manipulation of supramolecular structures of oligo(p-phenylenevinylene) terminated poly(propylene imine) dendrimers. <i>Chemical Communications</i> , 2002 , 1264-5	.8	8
154	FRET-based intracellular investigation of nanoprodrugs toward highly efficient anticancer drug delivery. <i>Nanoscale</i> , 2020 , 12, 16710-16715	-7	8
153	The Preprotein Binding Domain of SecA Displays Intrinsic Rotational Dynamics. Structure, 2019, 27, 90-103	l2e6	8
152	Identifying microbial species by single-molecule DNA optical mapping and resampling statistics. NAR Genomics and Bioinformatics, 2020, 2, lqz007	7	8
151	Covalent functionalization of molybdenum disulfide by chemically activated diazonium salts. Nanoscale, 2021 , 13, 2972-2981	·7	8
150	Promising Molecules for Optoelectronic Applications: Synthesis of 5,10-Dihydrobenzo[a]indolo[2,3-c]carbazoles by Scholl Reaction of 1,2-Bis(indol-2-yl)benzenes. 3. European Journal of Organic Chemistry, 2018 , 2018, 4683-4688	.2	7
149	The use of the adding-doubling method for the optical optimization of planar luminescent down shifting layers for solar cells. <i>Optics Express</i> , 2014 , 22 Suppl 3, A765-78	.3	7
148	Photophysical investigation of cyano-substituted terrylenediimide derivatives. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 14662-74	4	7
147	Design and synthesis of nucleolipids as possible activated precursors for oligomer formation via intramolecular catalysis: stability study and supramolecular organization. <i>Journal of Systems Chemistry</i> , 2014 , 5, 5		7
146	Third-Order Nonlinear Optical Properties and Saturation of Two-Photon Absorption in Lead-Free Double Perovskite Nanocrystals under Femtosecond Excitation. <i>ACS Photonics</i> ,	.3	7
145	Simple Donor Acceptor Luminogen Based on an Azaindole Derivative as Solid-State Emitter for Organic Light-Emitting Devices. <i>ACS Energy Letters</i> , 2017 , 2, 2653-2658	0.1	6
144	Accurate Diffusion Coefficients of Organosoluble Reference Dyes in Organic Media Measured by Dual-Focus Fluorescence Correlation Spectroscopy. <i>ACS Nano</i> , 2015 , 9, 7360-73	6.7	6

143	Mapping pixel dissimilarity in wide-field super-resolution fluorescence microscopy. <i>Analytical Chemistry</i> , 2015 , 87, 4675-82	7.8	6
142	X-Ray-Induced Growth Dynamics of Luminescent Silver Clusters in Zeolites. <i>Small</i> , 2020 , 16, e2002063	11	6
141	Controlled Fabrication of Optical Signal Input/Output Sites on Plasmonic Nanowires. <i>Nano Letters</i> , 2020 , 20, 2460-2467	11.5	6
140	Cellular localization and dynamics of the Mrr type IV restriction endonuclease of Escherichia coli. <i>Nucleic Acids Research</i> , 2014 , 42, 3908-18	20.1	6
139	Structural basis for the influence of a single mutation K145N on the oligomerization and photoswitching rate of Dronpa. <i>Acta Crystallographica Section D: Biological Crystallography</i> , 2012 , 68, 1653-9		6
138	EGF RECEPTOR DYNAMICS IN EGF-RESPONDING CELLS REVEALED BY FUNCTIONAL IMAGING DURING SINGLE PARTICLE TRACKING. <i>Biophysical Reviews and Letters</i> , 2013 , 08, 229-242	1.2	6
137	Non-conjugated, phenyl assisted coupling in through bond electron transfer in a perylenemonoimide-triphenylamine system. <i>Photochemical and Photobiological Sciences</i> , 2007 , 6, 406-1	5 ⁴⁻²	6
136	Dreidimensionale Nanoskopie: biologische Nanostrukturen im Fokus. <i>Angewandte Chemie</i> , 2007 , 119, 8480-8482	3.6	6
135	Singlet-singlet annihilation leading to a charge-transfer intermediate in chromophore-end-capped pentaphenylenes. <i>ChemPhysChem</i> , 2007 , 8, 1386-93	3.2	6
134	Defocused Imaging in Wide-field Fluorescence Microscopy. Springer Series on Fluorescence, 2007, 257-2	84 .5	6
133	New strategies for low light level detection in single molecule spectroscopy. <i>Chemical Physics Letters</i> , 2001 , 338, 151-158	2.5	6
132	Two-dimensional perovskites with alternating cations in the interlayer space for stable light-emitting diodes. <i>Nanophotonics</i> , 2021 , 10, 2145-2156	6.3	6
131	Synergy of Advanced Experimental and Modeling Tools to Underpin the Synthesis of Static Step-Growth-Based Networks Involving Polymeric Precursor Building Blocks. <i>Macromolecules</i> , 2021 , 54, 9280-9298	5.5	6
130	Investigation of Many-Body Exciton Recombination and Optical Anisotropy in Two-Dimensional Perovskites Having Different Layers with Alternating Cations in the Interlayer Space. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 7799-7807	3.8	6
129	Dual-Channel Charge Carrier Transfer in CsPbX3 Perovskite/W18O49 Composites for Selective Photocatalytic Benzyl Alcohol Oxidation. <i>ACS Applied Energy Materials</i> , 2021 , 4, 3460-3468	6.1	6
128	Operationally Stable Perovskite Light Emitting Diodes with High Radiance. <i>Advanced Optical Materials</i> , 2021 , 9, 2100586	8.1	6
127	Trojans That Flip the Black Phase: Impurity-Driven Stabilization and Spontaneous Strain Suppression in EcsPbI Perovskite. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10500-10508	16.4	6
126	Simple microfluidic stagnation point flow geometries. <i>Biomicrofluidics</i> , 2016 , 10, 043506	3.2	6

125	Photoconvertible Behavior of LSSmOrange Applicable for Single Emission Band Optical Highlighting. <i>Biophysical Journal</i> , 2016 , 111, 1014-25	2.9	6
124	Linear assembly of lead bromide-based nanoparticles inside lead(ii) polymers prepared by mixing the precursors of both the nanoparticle and the polymer. <i>Chemical Communications</i> , 2019 , 55, 2968-297	, ₁ 5.8	6
123	Luminescent silver[Ithium-zeolite phosphors for near-ultraviolet LED applications. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 14366-14374	7.1	6
122	Image-Based Dynamic Phenotyping Reveals Genetic Determinants of Filamentation-Mediated Lactam Tolerance. <i>Frontiers in Microbiology</i> , 2020 , 11, 374	5.7	6
121	Bipolar luminescent azaindole derivative exhibiting aggregation-induced emission for non-doped organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 1222-1227	7.1	5
120	A study of SeqA subcellular localization in Escherichia coli using photo-activated localization microscopy. <i>Faraday Discussions</i> , 2015 , 184, 425-50	3.6	5
119	Femtosecond Laser Trapping Dynamics of Nanoparticles: A Single Transient Assembly Formation Leading to Their Directional Ejection. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13233-13242	3.8	5
118	Formation Mechanism and Fluorescence Characterization of a Transient Assembly of Nanoparticles Generated by Femtosecond Laser Trapping. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 27823-27833	3.8	5
117	Experimental validation of adding-doubling modeling of solar cells including luminescent down-shifting layers. <i>Journal of Renewable and Sustainable Energy</i> , 2015 , 7, 043130	2.5	5
116	The effect of medium structure complexity on the growth of Saccharomyces cerevisiae in gelatin-dextran systems. <i>International Journal of Food Microbiology</i> , 2015 , 199, 8-14	5.8	5
115	A hybrid tool for spectral ray tracing simulations of luminescent cascade systems. <i>Optics Express</i> , 2014 , 22, 24582-93	3.3	5
114	Probing dimerization and intraprotein fluorescence resonance energy transfer in a far-red fluorescent protein from the sea anemone Heteractis crispa. <i>Journal of Biomedical Optics</i> , 2008 , 13, 031	2312	5
113	Tunable white emission of silver-sulfur-zeolites as single-phase LED phosphors. <i>Methods and Applications in Fluorescence</i> , 2020 , 8, 024004	3.1	5
112	Optical Force-Induced Dynamics of Assembling, Rearrangement, and Three-Dimensional Pistol-like Ejection of Microparticles at the Solution Surface. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 27107-271	1378	5
111	Vibrational study of lead bromide perovskite materials with variable cations based on Raman spectroscopy and density functional theory. <i>Journal of Raman Spectroscopy</i> ,	2.3	5
110	Perovskite-Based Devices: Photophysical Pathways in Highly Sensitive Cs2AgBiBr6 Double-Perovskite Single-Crystal X-Ray Detectors (Adv. Mater. 46/2018). <i>Advanced Materials</i> , 2018 , 30, 1870353	24	5
109	Reversible Optical Writing and Data Storage in an Anthracene-Loaded Metal@rganic Framework. <i>Angewandte Chemie</i> , 2018 , 131, 2445	3.6	5
108	Single-Molecule Surface-Enhanced Resonance Raman Spectroscopy of the Enhanced Green Fluorescent Protein EGFP 2006 , 297-312		5

107	An Integrated Bulk and Surface Modification Strategy for Gas-Quenched Inverted Perovskite Solar Cells with Efficiencies Exceeding 22%. <i>Solar Rrl</i> ,2200053	7.1	5
106	Reporter cell activity within hydrogel constructs quantified from oxygen-independent bioluminescence. <i>Biomaterials</i> , 2014 , 35, 8065-77	15.6	4
105	Carbon catabolite repression and cell dispersal affect degradation of the xenobiotic compound 3,4-dichloroaniline in Comamonas testosteroni WDL7 biofilms. <i>FEMS Microbiology Ecology</i> , 2017 , 93,	4.3	4
104	Colonization of hard and soft surfaces by Aggregatibacter actinomycetemcomitans under hydrodynamic conditions. <i>Oral Microbiology and Immunology</i> , 2008 , 23, 498-504		4
103	Probing molecular properties and the role of the environment at the single-molecule level. <i>Pure and Applied Chemistry</i> , 2006 , 78, 2261-2266	2.1	4
102	Merging of Hard Spheres by Phototriggered Micromanipulation. <i>Angewandte Chemie</i> , 2001 , 113, 1760-7	1 36 4	4
101	Confocal and Scanning Probe Microscopy of Surface Modifications of Thin Polymer Films Induced by Infrared Diode Laser Irradiation. <i>Langmuir</i> , 1999 , 15, 1364-1372	4	4
100	Imaging the Replication of Single Viruses: Lessons Learned from HIV and Future Challenges To Overcome. <i>ACS Nano</i> , 2020 , 14, 10775-10783	16.7	4
99	Tailoring the d-Band Center of Double-Perovskite LaCoNiO Nanorods for High Activity in Artificial N Fixation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 13347-13353	9.5	4
98	Resonantly Enhanced Optical Trapping of Single Dye-Doped Particles at an Interface. <i>ACS Photonics</i> , 2021 , 8, 1832-1839	6.3	4
97	All-Evaporated, All-Inorganic CsPbI Perovskite-Based Devices for Broad-Band Photodetector and Solar Cell Applications. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 3023-3033	4	4
96	Tunable Luminescence from Stable Silver Nanoclusters Confined in Microporous Zeolites. <i>Advanced Optical Materials</i> ,2100526	8.1	4
95	Field-Controlled Charge Separation in a Conductive Matrix at the Single-Molecule Level: Toward Controlling Single-Molecule Fluorescence Intermittency. <i>ACS Omega</i> , 2016 , 1, 1383-1392	3.9	4
94	Heterogeneities and Emissive Defects in MAPbI3 Perovskite Revealed by Spectrally Resolved Luminescence Blinking. <i>Advanced Optical Materials</i> , 2021 , 9, 2001380	8.1	4
93	Nature of the different emissive states and strong exciton-phonon couplings in quasi-two-dimensional perovskites derived from phase-modulated two-photon micro-photoluminescence spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 3983-3992	3.6	4
92	Photothermal Suzuki Coupling Over a Metal Halide Perovskite/Pd Nanocube Composite Catalyst <i>ACS Applied Materials & District Material</i>	9.5	4
91	Aminobacter sp. MSH1 invades sand filter community biofilms while retaining 2,6-dichlorobenzamide degradation functionality under C- and N-limiting conditions. <i>FEMS Microbiology Ecology</i> , 2017 , 93,	4.3	3
90	Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors. <i>Journal of Visualized Experiments</i> , 2016 ,	1.6	3

89	Experimental determination of the absorption and scattering properties of YAG:Ce phosphor 2014,		3
88	Taking the spectral overlap between excitation and emission spectra of fluorescent materials into account with Monte Carlo simulations 2014 ,		3
87	Charge transfer effects in graphene-CdSe/ZnS quantum dots composites 2012 ,		3
86	Structural and Optical Properties of ZnWO4:Er3+Crystals. <i>Journal of Spectroscopy</i> , 2013 , 2013, 1-5	1.5	3
85	Fluorescence Correlation Spectroscopy 2011 , 93-146		3
84	NASCA Microscopy: Super-Resolution Mapping of Chemical Reaction Centers. <i>Springer Series on Fluorescence</i> , 2011 , 245-261	0.5	3
83	Atomically dispersed Pt sites on porous metal®rganic frameworks to enable dual reaction mechanisms for enhanced photocatalytic hydrogen conversion. <i>Journal of Catalysis</i> , 2022 , 407, 1-9	7.3	3
82	Ion Motion Determines Multiphase Performance Dynamics of Perovskite LEDs. <i>Advanced Optical Materials</i> ,2101560	8.1	3
81	Absolute measurement of cellular activities using photochromic single-fluorophore biosensors		3
80	Highly Luminescent Metal Clusters Confined in Zeolites. Structure and Bonding, 2020, 75-103	0.9	3
79	Experimental Evidence of Chloride-Induced Trap Passivation in Lead Halide Perovskites through Single Particle Blinking Studies. <i>Advanced Optical Materials</i> ,2002240	8.1	3
78	Photo-induced electrodeposition of metallic nanostructures on graphene. <i>Nanoscale</i> , 2020 , 12, 11063-1	1,0,69	3
77	A Universal Labeling Strategy for Nucleic Acids in Expansion Microscopy. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13782-13789	16.4	3
76	Tuning the Linkers in Polymer-Based Cathodes to Realize High Sulfur Content and High-Performance Potassium Bulfur Batteries. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 18604-18613	3.8	3
75	Cooperative Optical Trapping of Polystyrene Microparticle and Protein Forming a Submillimeter Linear Assembly of Microparticle. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 18988-18999	3.8	3
74	Flexible Metal Halide Perovskite Photodetector Arrays via Photolithography and Dry Lift-Off Patterning. <i>Advanced Engineering Materials</i> ,2100930	3.5	3
73	Fluorescence-free First Hyperpolarizability Values of Fluorescent Proteins and Channel Rhodopsins. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2020 , 400, 112658	4.7	2
72	Fast quantitative time lapse displacement imaging of endothelial cell invasion. <i>PLoS ONE</i> , 2020 , 15, e02	2 <u>7</u> , 7 86	2

71	Synthesis, Ensemble, and Single Molecule Characterization of a Diphenyl-Acetylene Linked Terrylenediimide Dimer. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 2333-42	3.4	2	
70	Fluorophores and Fluorescent Labels 2011 , 31-60		2	
69	A Critical Assessment of the Synthesis of Diameter and Chirality Controlled CNTs in Zeolites. <i>ECS Transactions</i> , 2009 , 19, 161-174	1	2	
68	In situ filming of reactions inside individual zeolite crystals using fluorescence microscopy. <i>Studies in Surface Science and Catalysis</i> , 2007 , 717-723	1.8	2	
67	Imaging of enzyme catalysis by wide field microscopy. <i>Handai Nanophotonics</i> , 2007 , 3, 133-141		2	
66	Single molecule detection of macromolecules. <i>Macromolecular Symposia</i> , 2002 , 178, 1-10	0.8	2	
65	Single-molecule spectroscopy to probe competitive fluorescence resonance energy transfer pathways in bichromophoric synthetic systems 2004 ,		2	
64	Fluorescence study of field-induced director reorientations in low mass liquid crystalline compounds. <i>Journal of Fluorescence</i> , 1991 , 1, 193-202	2.4	2	
63	Synthese und komplexierende Eigenschaften symmetrischer N,N?-Tetra-(8-hydroxychinolyl-5-methyl)-#diaminoalkane. <i>Archiv Der Pharmazie</i> , 1982 , 315, 131-135	4.3	2	
62	Spatial Proteomic Analysis of Isogenic Metastatic Colorectal Cancer Cells Reveals Key Dysregulated Proteins Associated with Lymph Node, Liver, and Lung Metastasis <i>Cells</i> , 2022 , 11,	7.9	2	
61	Porphyrin Core Dendrimers with Ether-Linked Carbazole Dendrons: Dual Luminescence of Core and Conformational Flexibility of Dendritic Shell. <i>Macroheterocycles</i> , 2014 , 7, 240-248	2.2	2	
60	Excited State Probing of Supramolecular Systems on a Submicron Scale 1999 , 119-136		2	
59	Quantification of FRET-induced angular displacement by monitoring sensitized acceptor anisotropy using a dim fluorescent donor. <i>Nature Communications</i> , 2021 , 12, 2541	17.4	2	
58	Self-contained and modular structured illumination microscope. <i>Biomedical Optics Express</i> , 2021 , 12, 4414-4422	3.5	2	
57	Solar-to-Chemical Fuel Conversion via Metal Halide Perovskite Solar-Driven Electrocatalysis Journal of Physical Chemistry Letters, 2021 , 25-41	6.4	2	
56	Luminescence of fixed site Ag nanoclusters in a simple oxyfluoride glass host and plasmon absorption of amorphous Ag nanoparticles in a complex oxyfluoride glass host 2015 ,		1	
55	Curve Extraction by Geodesics Fusion: Application to Polymer Reptation Analysis. <i>Lecture Notes in Computer Science</i> , 2016 , 79-88	0.9	1	
54	Single particle tracking of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type-1 repeats) molecules on endothelial von Willebrand factor strings. <i>Journal of Biological Chemistry</i> , 2014 , 289, 8903-15	5.4	1	

53	Photoinduced Electron Transfer (PET) Reactions 2011 , 189-218		1
52	Preface to the Hiroshi Masuhara Festschrift: Exploration with Lasers into New Areas of Molecular Photoscience. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 11425-11427	3.8	1
51	Naphthalene diimides as tunable fluorophores suitable for single molecule applications 2007,		1
50	Single molecule spectroscopic characterization of a far-red fluorescent protein (HcRed) from the Anthozoa coral Heteractis crispa 2006 , 6098, 18		1
49	Ensemble Photophysics of Rigid Polyphenylene Based Dendritic Structures. <i>Advances in Photochemistry</i> , 2005 , 1-51		1
48	5-(Ureido-, Guanidino- und Biguanido-methyl)-8-hydroxychinoline. <i>Archiv Der Pharmazie</i> , 1981 , 314, 731-	7433	1
47	Spatial Heterogeneity of n-Phases Leads to Different Photophysical Properties in Quasi-Two-Dimensional Methylammonium Lead Bromide Perovskite. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 478-486	3.8	1
46	Femtosecond laser trapping, assembling, and ejection dynamics of dielectric nanoparticles in solution 2018 ,		1
45	Modeling of Ion and Water Transport in the Biological Nanopore ClyA		1
44	Optical encoding of luminescent carbon nanodots in confined spaces. <i>Chemical Communications</i> , 2021 , 57, 11952-11955	5.8	1
43	Watching Individual Enzymes at Work. Springer Series in Chemical Physics, 2010, 495-511	0.3	1
42	Evaluation of direct grafting strategies in Expansion Microscopy		1
41	Spatially and Temporally Resolved Heterogeneities in a Miscible Polymer Blend. <i>ACS Omega</i> , 2020 , 5, 23931-23939	3.9	1
40	Autophosphorylation of EGFR at Y954 Facilitated Homodimerization and Enhanced Downstream Signals. <i>Biophysical Journal</i> , 2020 , 119, 2127-2137	2.9	1
39	Photon Momentum Dictates the Shape of Swarming Gold Nanoparticles in Optical Trapping at an Interface. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 19013-19021	3.8	1
38	New Analysis of Single Molecule Fluorescence Using Series of Photon Arrival Times 2004 , 299-340		1
37	Merging of Hard Spheres by Phototriggered Micromanipulation K.T. thanks the Mitsubishi Paper Mills Co. T.G., J.H., and L.L. thank the European Commission for a TMR fellowship within the frame of the Marie Curie program, the FWO, and the Flemish Ministry of Education, respectively. J.W.W.	16.4	1
36	and A.S. acknowledge grants from the EU (BICEPS project) and the Royal Dutch Foundation of Absolute measurement of cellular activities using photochromic single-fluorophore biosensors and intermittent quantification. Nature Communications, 2022, 13, 1850 nternational Edition, 2001, 40, 1710	-17·4 ₄	1

(2011-2022)

35	Site-Sensitive Selective CO Photoreduction to CO over Gold Nanoparticles <i>Angewandte Chemie - International Edition</i> , 2022 , e202204563	16.4	1
34	High-entropy perovskite oxides: A versatile class of materials for nitrogen reduction reactions. <i>Science China Materials</i> ,1	7.1	1
33	Intense Electrical Pulsing of Perovskite Light Emitting Diodes under Cryogenic Conditions. <i>Advanced Optical Materials</i> ,2200024	8.1	1
32	Intramolecular charge transfer and molecular flexibility: Key parameters to be considered in the design of highly fluorescent p-phenylene vinylene derivatives. <i>Dyes and Pigments</i> , 2022 , 199, 110105	4.6	О
31	Two-Photon-Induced [2 + 2] Cycloaddition of Bis-thymines: A Biocompatible and Reversible Approach. <i>ACS Omega</i> , 2020 , 5, 11547-11552	3.9	О
30	Fluorescence Photoswitching in a Series of Metal-Organic Frameworks Loaded with Different Anthracenes. <i>European Journal of Inorganic Chemistry</i> , 2021 , 2021, 2986-2992	2.3	O
29	Assessing the Resolution of Methyltransferase-Mediated DNA Optical Mapping. <i>ACS Omega</i> , 2021 , 6, 21276-21283	3.9	0
28	The Optical Absorption Force Allows Controlling Colloidal Assembly Morphology at an Interface. <i>Advanced Optical Materials</i> ,2200231	8.1	O
27	Curve computation by geodesics and graph modelling for polymer analysis. <i>Signal, Image and Video Processing</i> , 2017 , 11, 1469-1476	1.6	
26	A Conversation with Frans C. De Schryver. ACS Energy Letters, 2018, 3, 191-192	20.1	
26 25	A Conversation with Frans C. De Schryver. <i>ACS Energy Letters</i> , 2018 , 3, 191-192 Optical Modelling of Luminescent Cascade Systems with the Adding-Doubling Method. <i>Springer Proceedings in Physics</i> , 2016 , 67-80	0.2	
	Optical Modelling of Luminescent Cascade Systems with the Adding-Doubling Method. <i>Springer</i>		
25	Optical Modelling of Luminescent Cascade Systems with the Adding-Doubling Method. <i>Springer Proceedings in Physics</i> , 2016 , 67-80 Fluorescence Microscopy, Single Fluorophores and Nano-Reporters, Super-Resolution Far-Field		
25	Optical Modelling of Luminescent Cascade Systems with the Adding-Doubling Method. Springer Proceedings in Physics, 2016, 67-80 Fluorescence Microscopy, Single Fluorophores and Nano-Reporters, Super-Resolution Far-Field Microscopy 2012, 479-507 Inside Cover: Mapping of Surface-Enhanced Fluorescence on Metal Nanoparticles using Super-Resolution Photoactivation Localization Microscopy (ChemPhysChem 4/2012).	0.2	
25 24 23	Optical Modelling of Luminescent Cascade Systems with the Adding-Doubling Method. Springer Proceedings in Physics, 2016, 67-80 Fluorescence Microscopy, Single Fluorophores and Nano-Reporters, Super-Resolution Far-Field Microscopy 2012, 479-507 Inside Cover: Mapping of Surface-Enhanced Fluorescence on Metal Nanoparticles using Super-Resolution Photoactivation Localization Microscopy (ChemPhysChem 4/2012). ChemPhysChem, 2012, 13, 882-882 Automatic particle detection in microscopy using temporal correlations. Microscopy Research and	3.2	
25 24 23 22	Optical Modelling of Luminescent Cascade Systems with the Adding-Doubling Method. Springer Proceedings in Physics, 2016, 67-80 Fluorescence Microscopy, Single Fluorophores and Nano-Reporters, Super-Resolution Far-Field Microscopy 2012, 479-507 Inside Cover: Mapping of Surface-Enhanced Fluorescence on Metal Nanoparticles using Super-Resolution Photoactivation Localization Microscopy (ChemPhysChem 4/2012). ChemPhysChem, 2012, 13, 882-882 Automatic particle detection in microscopy using temporal correlations. Microscopy Research and Technique, 2013, 76, 997-1006	3.2	
25 24 23 22 21	Optical Modelling of Luminescent Cascade Systems with the Adding-Doubling Method. Springer Proceedings in Physics, 2016, 67-80 Fluorescence Microscopy, Single Fluorophores and Nano-Reporters, Super-Resolution Far-Field Microscopy 2012, 479-507 Inside Cover: Mapping of Surface-Enhanced Fluorescence on Metal Nanoparticles using Super-Resolution Photoactivation Localization Microscopy (ChemPhysChem 4/2012). ChemPhysChem, 2012, 13, 882-882 Automatic particle detection in microscopy using temporal correlations. Microscopy Research and Technique, 2013, 76, 997-1006 Fluorophore Labeling for Single-Molecule Fluorescence Spectroscopy (SMFS) 2011, 61-83	3.2	

Single-Molecule Enzymatics **2011**, 241-271

16	Transition from Metallic to Semiconducting Behavior in Oxygen Plasma-treated Single-layer	
10	Graphene. Materials Research Society Symposia Proceedings, 2011 , 1336, 20701	
15	Nanopatterned monolayers of an adsorbed chromophore. <i>Nanotechnology</i> , 2008 , 19, 335303	3.4
14	Excited state processes in individual multichromophoric systems 2003 , 4962, 1	
13	Chapter 1 Photophysical processes in multichromophoric systems at the ensemble and single molecule level. <i>Handai Nanophotonics</i> , 2004 , 3-21	
12	Frans De Schryver: forty years of photochemistry and photophysics. <i>ChemPhysChem</i> , 2005 , 6, 2215-7	3.2
11	Cover Picture: Single-Enzyme Kinetics of CALB-Catalyzed Hydrolysis (Angew. Chem. Int. Ed. 4/2005). <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 495-495	16.4
10	Time-resolved photoluminescence in YBa2Cu3O6.4 and Bi2Sr2Ca1-zLuzCu2O8. <i>Physical Review B</i> , 1994 , 49, 694-697	3.3
9	Fluorescence study of a field-induced director reorientation in a liquid crystalline polyacrylate. <i>Journal of Fluorescence</i> , 1991 , 1, 69-76	2.4
8	Multiparametric Detection of Fluorescence Emitted from Individual Multichromophoric Systems. <i>Springer Series on Fluorescence</i> , 2002 , 131-151	0.5
7	Single Enzyme Kinetics: A Study of the Yeast Enzyme Candida Antarctica Lipase B. <i>Springer Series in Biophysics</i> , 2008 , 163-180	
6	Electroluminescent Nanoparticles: Electroluminescent Guest@MOF Nanoparticles for Thin Film Optoelectronics and Solid-State Lighting (Advanced Optical Materials 16/2020). <i>Advanced Optical Materials</i> , 2020 , 8, 2070066	8.1
5	Optically Active Materials: Aggregation Induced Enhancement of Linear and Nonlinear Optical Emission from a Hexaphenylene Derivative (Adv. Funct. Mater. 48/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 9083-9083	15.6
4	Non-radiative processes in metal halide perovskite semiconductors probed by photoluminescence microscopy. <i>EPJ Web of Conferences</i> , 2018 , 190, 02011	0.3
3	Transcriptomic analysis of phenanthrene degrading Sphingomonas biofilms exposed to environmentally relevant solute and matric stresses. <i>Communications in Agricultural and Applied Biological Sciences</i> , 2011 , 76, 69-72	
2	Single-Molecule Surface-Enhanced Resonance Raman Spectroscopy of the Enhanced Green Fluorescent Protein EGFP 2006 , 297-312	

1 Reactions at the Single-Molecule Level281-308