Zeng-Qiang Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6750454/publications.pdf

Version: 2024-02-01

		394421	5	26287	
73	972	19		27	
papers	citations	h-index		g-index	
			_		1
75	75	75		1539	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Organic–inorganic hybrid metallic conductors based on bis(ethylenedithio)tetrathiafulvalene cations and antiferromagnetic oxalate-bridged copper(<scp>ii</scp>) dinuclear anions. Journal of Materials Chemistry C, 2022, 10, 2845-2852.	5.5	2
2	Structure and Biochemical Characteristics of the Methyltransferase Domain of RNA Capping Enzyme from African Swine Fever Virus. Journal of Virology, 2021, 95, .	3.4	9
3	NUDIM: A non-uniform fast Fourier transform based dual-space constraint iterative reconstruction method in biological electron tomography. Journal of Structural Biology, 2021, 213, 107770.	2.8	2
4	Insights into the Neutralization and DNA Binding of Toxin–Antitoxin System ParESO-CopASO by Structure-Function Studies. Microorganisms, 2021, 9, 2506.	3.6	3
5	Structural and functional characterization of the deep-sea thermophilic bacteriophage GVE2 tailspike protein. International Journal of Biological Macromolecules, 2020, 164, 4415-4422.	7.5	3
6	Characterization of the <i>Pseudomonas aeruginosa </i> T6SS PldB immunity proteins PA5086, PA5087 and PA5088 explains a novel stockpiling mechanism. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 222-227.	0.8	3
7	Crystal structure of the nucleoid-associated protein Fis (PA4853) from <i>Pseudomonas aeruginosa</i> . Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 209-215.	0.8	O
8	A noise and artifact suppression using resampling (NASR) method to facilitate de novo protein structure determination. Radiation Detection Technology and Methods, 2019, 3, 1.	0.8	1
9	Conformational changes of antitoxin HigA from Escherichia coli str. K-12 upon binding of its cognate toxin HigB reveal a new regulation mechanism in toxin-antitoxin systems. Biochemical and Biophysical Research Communications, 2019, 514, 37-43.	2.1	7
10	Crystal structure of the type VI immunity protein Tdi1 (Atu4351) from <i>Agrobacterium tumefaciens</i> . Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 153-158.	0.8	1
11	Structural Insights Into the Transcriptional Regulation of HigBA Toxin–Antitoxin System by Antitoxin HigA in Pseudomonas aeruginosa. Frontiers in Microbiology, 2019, 10, 3158.	3.5	16
12	Structureâ€"function analyses reveal the molecular architecture and neutralization mechanism of a bacterial HEPNâ€"MNT toxinâ€"antitoxin system. Journal of Biological Chemistry, 2018, 293, 6812-6823.	3.4	24
13	Crystal structures of multicopper oxidase CueO G304K mutant: structural basis of the increased laccase activity. Scientific Reports, 2018, 8, 14252.	3.3	15
14	Structural and biochemical characterization of the yeast HD domain containing protein YGK1 reveals a metal-dependent nucleoside $5\hat{E}^1$ -monophosphatase. Biochemical and Biophysical Research Communications, 2018, 501, 674-681.	2.1	4
15	An iterative refinement method combining detector geometry optimization and diffraction model refinement in serial femtosecond crystallography. Radiation Detection Technology and Methods, 2018, 2, 1.	0.8	1
16	The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function. PLoS Pathogens, 2018, 14, e1007232.	4.7	15
17	(BEDTâ€ITF) ₂ Cu ₂ (HCOO) ₅ : An Organic–Inorganic Hybrid Conducting Magnet. ChemistryOpen, 2017, 6, 320-324.	1.9	4
18	Exploring New Assembly Modes of Uranyl Terephthalate: Templated Syntheses and Structural Regulation of a Series of Rare 2D â†' 3D Polycatenated Frameworks. Inorganic Chemistry, 2017, 56, 7694-7706.	4.0	37

#	Article	IF	CITATIONS
19	Structural analysis of Wss1 protein from saccharomyces cerevisiae. Scientific Reports, 2017, 7, 8270.	3.3	10
20	Structural and SAXS analysis of Tle5–Tli5 complex reveals a novel inhibition mechanism of H2‶6SS in <i>Pseudomonas aeruginosa</i>). Protein Science, 2017, 26, 2083-2091.	7.6	6
21	Supramolecular Host–Guest Inclusion for Distinguishing Cucurbit[7]urilâ€Based Pseudorotaxanes from Smallâ€Molecule Ligands in Coordination Assembly with a Uranyl Center. Chemistry - A European Journal, 2017, 23, 13995-14003.	3.3	33
22	HicAB toxin–antitoxin complex fromEscherichia coli: expression and crystallization. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 505-510.	0.8	3
23	Crystal structure of the putative cytoplasmic protein STM0279 (Hcp2) from <i>Salmonella typhimurium</i> . Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 463-468.	0.8	5
24	Structural Insights into the Methylation of C1402 in 16S rRNA by Methyltransferase Rsml. PLoS ONE, 2016, 11, e0163816.	2.5	8
25	Structural insight into the E.Âcoli HigBA complex. Biochemical and Biophysical Research Communications, 2016, 478, 1521-1527.	2.1	17
26	Novel Uranyl Coordination Polymers Based on Quinoline-Containing Dicarboxylate by Altering Auxiliary Ligands: From 1D Chain to 3D Framework. Crystal Growth and Design, 2016, 16, 4886-4896.	3.0	27
27	Structural analysis of <i>Pseudomonas aeruginosa</i> H3â€T6SS immunity proteins. FEBS Letters, 2016, 590, 2787-2796.	2.8	9
28	Mechanism of the allosteric regulation of <i>Streptococcus mutans < /i> ≥′-deoxycytidylate deaminase. Acta Crystallographica Section D: Structural Biology, 2016, 72, 883-891.</i>	2.3	4
29	Structural insights into the inhibition mechanism of bacterial toxin LsoA by bacteriophage antitoxin Dmd. Molecular Microbiology, 2016, 101, 757-769.	2.5	16
30	Genome-Wide Mapping of the Binding Sites and Structural Analysis of Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 2 Reveal that It Is a DNA-Binding Transcription Factor. Journal of Virology, 2016, 90, 1158-1168.	3.4	10
31	Structural characterizations of phage antitoxin Dmd and its interactions with bacterial toxin RnlA. Biochemical and Biophysical Research Communications, 2016, 472, 592-597.	2.1	16
32	Structural basis for the interaction of BamB with the POTRA3–4 domains of BamA. Acta Crystallographica Section D: Structural Biology, 2016, 72, 236-244.	2.3	14
33	Oxovanadium(IV) Schiff Base Complex Derived From Phenylalanine Analogue Containing 2,3-Diaminopropionic Acid (DAP): Synthesis, Computational Study, and Biological Evaluation. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 455-467.	0.6	2
34	New Insight of Coordination and Extraction of Uranium(VI) with N-Donating Ligands in Room Temperature Ionic Liquids: <i>N</i> , <i< td=""><td>4.0</td><td>20</td></i<>	4.0	20
35	Crystal structure of GnsA from Escherichia coli. Biochemical and Biophysical Research Communications, 2015, 462, 1-7.	2.1	5
36	Synthesis, structures and magnetic properties in 3d-electron-rich isostructural complexes based on chains with sole syn–anti carboxylate bridges. Dalton Transactions, 2015, 44, 7213-7222.	3.3	46

#	Article	IF	CITATIONS
37	Silver Ion-Mediated Heterometallic Three-Fold Interpenetrating Uranyl–Organic Framework. Inorganic Chemistry, 2015, 54, 10934-10945.	4.0	44
38	Structural and functional analysis show that the <i>Escherichia coli</i> uncharacterized protein <scp>Y</scp> jc <scp>S</scp> is likely an alkylsulfatase. Protein Science, 2014, 23, 1442-1450.	7.6	8
39	Crystal structures and kinetic properties of enoylâ€acyl carrier protein reductase I from <i>Candidatus Liberibacter asiaticus</i> . Protein Science, 2014, 23, 366-377.	7.6	5
40	Structure of the type VI secretion phospholipase effector Tle1 provides insight into its hydrolysis and membrane targeting. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2175-2185.	2.5	26
41	Application of a conic glass monocapillary in Beijing synchrotron radiation facility. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 754, 42-45.	1.6	1
42	Synthesis, Crystal Structure, and Characterization of the Charge-Transfer Salt (BEDT-TTF)[Fe(C2O4)Cl2](CH2Cl2), {BEDT-TTF = Bis(ethylenedithio)tetrathiafulvalene}. European Journal of Inorganic Chemistry, 2014, 2014, 4028-4032.	2.0	7
43	High-resolution crystal structure reveals a HEPN domain at the C-terminal region of S. cerevisiae RNA endonuclease Swt1. Biochemical and Biophysical Research Communications, 2014, 453, 826-832.	2.1	2
44	Structural and Functional Characterization of Escherichia coli Toxin-Antitoxin Complex DinJ-YafQ. Journal of Biological Chemistry, 2014, 289, 21191-21202.	3.4	29
45	Conserved residues that modulate protein <i>trans</i> splicing of <i>Npu</i> DnaE split intein. Biochemical Journal, 2014, 461, 247-255.	3.7	11
46	Synthesis, crystal structures and characterization of two heterometallic compounds: Ba 3 [Fe(C 2 O 4) Tj ETQqC 399-404.	0 0 0 rgBT 2.4	Overlock 10
47	Cloning, purification, crystallization and preliminary X-ray studies of the putative type VI secretion immunity protein Tli5 (PA5088) fromPseudomonas aeruginosa. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 903-905.	0.8	1
48	Structural basis for recognition of the type VI spike protein VgrG3 by a cognate immunity protein. FEBS Letters, 2014, 588, 1891-1898.	2.8	6
49	Structural Basis for Interaction between Mycobacterium smegmatis Ms6564, a TetR Family Master Regulator, and Its Target DNA. Journal of Biological Chemistry, 2013, 288, 23687-23695.	3.4	22
50	The crystal structure of human protein α1M reveals a chromophore-binding site and two putative protein–protein interfaces. Biochemical and Biophysical Research Communications, 2013, 439, 346-350.	2.1	3
51	Structure–function studies of <i><scp>E</scp>scherichia coli</i> â€ <scp>RnlA</scp> reveal a novel toxin structure involved in bacteriophage resistance. Molecular Microbiology, 2013, 90, 956-965.	2.5	21
52	Structure analysis of the global metabolic regulator Crc from <i>Pseudomonas aeruginosa</i> IUBMB Life, 2013, 65, 50-57.	3.4	5
53	NMR structure of the Nâ€terminalâ€most HRDC1 domain of RecQ helicase from <i>Deinococcus radiodurans</i> . FEBS Letters, 2013, 587, 2635-2642.	2.8	5
54	Structural insights into the inhibition of typeÂVI effector Tae3 by its immunity protein Tai3. Biochemical Journal, 2013, 454, 59-68.	3.7	26

#	Article	IF	CITATIONS
55	Purification, crystallization and preliminary crystallographic analysis of the 23S rRNA methyltransferase RlmM (Cm2498) fromEscherichia coli. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 640-642.	0.7	1
56	Structure of the Type VI Effector-Immunity Complex (Tae4-Tai4) Provides Novel Insights into the Inhibition Mechanism of the Effector by Its Immunity Protein*. Journal of Biological Chemistry, 2013, 288, 5928-5939.	3.4	65
57	Insights into the Cross-Immunity Mechanism within Effector Families of Bacteria Type VI Secretion System from the Structure of StTae4-EcTai4 Complex. PLoS ONE, 2013, 8, e73782.	2.5	11
58	Structural insights into the function of 23S rRNA methyltransferase RlmG (m2G1835) from Escherichia coli. Rna, 2012, 18, 1500-1509.	3 . 5	1
59	Crystal structure of type VI effector Tse1 from <i>Pseudomonas aeruginosa</i> . FEBS Letters, 2012, 586, 3193-3199.	2.8	23
60	Crystal and solution structures of methyltransferase RsmH provide basis for methylation of C1402 in 16S rRNA. Journal of Structural Biology, 2012, 179, 29-40.	2.8	31
61	The structural basis of the response regulator DrRRA from Deinococcus radiodurans. Biochemical and Biophysical Research Communications, 2012, 417, 1206-1212.	2.1	2
62	Structural and SAXS analysis of the budding yeast SHUâ€complex proteins. FEBS Letters, 2012, 586, 2306-2312.	2.8	18
63	Insights into the Catalytic Mechanism of 16S rRNA Methyltransferase RsmE (m3U1498) from Crystal and Solution Structures. Journal of Molecular Biology, 2012, 423, 576-589.	4.2	13
64	The crystal structure of the MPN domain from the COP9 signalosome subunit CSN6. FEBS Letters, 2012, 586, 1147-1153.	2.8	20
65	Cloning, purification, crystallization and preliminary X-ray studies of human $\hat{l}\pm 1$ -microglobulin. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 692-694.	0.7	1
66	Mononuclear copper(ii) complexes with 3,5-substituted-4-salicylidene-amino-3,5-dimethyl-1,2,4-triazole: synthesis, structure and potent inhibition of protein tyrosine phosphatases. Dalton Transactions, 2011, 40, 6532.	3.3	30
67	Crystal structure and site-directed mutagenesis of a nitroalkane oxidase from Streptomyces ansochromogenes. Biochemical and Biophysical Research Communications, 2011, 405, 344-348.	2.1	13
68	The $1.6\tilde{A}$ resolution structure of activated D138L mutant of catabolite gene activator protein with two cAMP bound in each monomer. International Journal of Biological Macromolecules, 2011, 48, 459-465.	7.5	2
69	Structure of the putative dihydroorotate dehydrogenase from <i>Streptococcus mutans</i> . Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 182-187.	0.7	8
70	High-resolution structure of a new crystal form of BamA POTRA4–5 from <i>Escherichia coli</i> Crystallographica Section F: Structural Biology Communications, 2011, 67, 734-738.	0.7	30
71	Structure of orotate phosphoribosyltransferase from the caries pathogen <i>Streptococcus mutans</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 498-502.	0.7	7
72	Photonic Logic Gates Based on Control of FRET by a Solvatochromic Perylene Bisimide. Journal of Organic Chemistry, 2007, 72, 2878-2885.	3 . 2	76

#	Article	IF	CITATIONS
73	Protein Preparation, Crystallization and Preliminary X-Ray Crystallographic Studies of Smu.1392c from Streptococcus mutans. Protein and Peptide Letters, 2006, 13, 1051-1052.	0.9	O