Tian Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6750328/tian-chen-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

20 509 9 20 g-index

20 710 8.3 4.88 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
20	Bending Response of a Book with Internal Friction. <i>Physical Review Letters</i> , 2021 , 126, 218004	7.4	5
19	A reprogrammable mechanical metamaterial with stable memory. <i>Nature</i> , 2021 , 589, 386-390	50.4	77
18	Computational design of multi-stable, reconfigurable surfaces. <i>Materials and Design</i> , 2021 , 205, 109688	8 8.1	1
17	Smooth Triaxial Weaving with Naturally Curved Ribbons. <i>Physical Review Letters</i> , 2021 , 127, 104301	7.4	2
16	3D weaving with curved ribbons. ACM Transactions on Graphics, 2021 , 40, 1-15	7.6	3
15	Computational inverse design of surface-based inflatables. ACM Transactions on Graphics, 2021, 40, 1-1	4 7.6	
14	Bistable auxetic surface structures. ACM Transactions on Graphics, 2021, 40, 1-9	7.6	
13	3D weaving with curved ribbons. ACM Transactions on Graphics, 2021, 40, 1-15	7.6	0
12	Bistable auxetic surface structures. ACM Transactions on Graphics, 2021, 40, 1-9	7.6	6
11	Programmable, active lattice structures: Unifying stretch-dominated and bending-dominated topologies. <i>Extreme Mechanics Letters</i> , 2019 , 29, 100461	3.9	23
10	Autonomous Deployment of a Solar Panel Using Elastic Origami and Distributed Shape-Memory-Polymer Actuators. <i>Physical Review Applied</i> , 2019 , 11,	4.3	51
9	Design and Computational Modeling of a 3D Printed Pneumatic Toolkit for Soft Robotics. <i>Soft Robotics</i> , 2019 , 6, 657-663	9.2	16
8	Efficient size and shape optimization of truss structures subject to stress and local buckling constraints using sequential linear programming. <i>Structural and Multidisciplinary Optimization</i> , 2018 , 58, 171-184	3.6	9
7	A 3D, performance-driven generative design framework: automating the link from a 3D spatial grammar interpreter to structural finite element analysis and stochastic optimization. <i>Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM</i> , 2018 , 32, 189-199	1.3	5
6	An Autonomous Programmable Actuator and Shape Reconfigurable Structures Using Bistability and Shape Memory Polymers. 3D Printing and Additive Manufacturing, 2018, 5, 91-101	4	31
5	Harnessing bistability for directional propulsion of soft, untethered robots. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5698-5702	11.5	171
4	Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically with Multi-Material 3D Printing. <i>Scientific Reports</i> , 2017 , 7, 45671	4.9	61

LIST OF PUBLICATIONS

First Year Technical Drawing and CAD Course 2015,

Large Shape Transforming 4D Auxetic Structures. 3D Printing and Additive Manufacturing, 2017, 4, 133-142

Design and Fabrication of Hierarchical Multi-Stable Structures Through Multi-Material Additive Manufacturing 2016,

Studying the Impact of Incorporating an Additive Manufacturing Based Design Exercise in a Large,

1