Rich G Carter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6750061/publications.pdf

Version: 2024-02-01

126907 168389 3,251 81 33 citations h-index papers

53 g-index 120 120 120 3382 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent. ACS Applied Materials & Dehydration Agent.	8.0	226
2	Mg-Ion Battery Electrode: An Organic Solid's Herringbone Structure Squeezed upon Mg-Ion Insertion. Journal of the American Chemical Society, 2017, 139, 13031-13037.	13.7	161
3	Enantioselective Total Synthesis of Lycopodine. Journal of the American Chemical Society, 2008, 130, 9238-9239.	13.7	151
4	A Hydrocarbon Cathode for Dual-Ion Batteries. ACS Energy Letters, 2016, 1, 719-723.	17.4	124
5	Improved Protocol for Asymmetric, Intramolecular Heteroatom Michael Addition Using Organocatalysis: Enantioselective Syntheses of Homoproline, Pelletierine, and Homopipecolic Acid. Journal of Organic Chemistry, 2008, 73, 5155-5158.	3.2	113
6	Total Synthesis of Epothilone B, Epothilone D, andcis- andtrans-9,10-Dehydroepothilone D. Journal of the American Chemical Society, 2001, 123, 5407-5413.	13.7	98
7	<i>N</i> -(<i>p</i> -Dodecylphenylsulfonyl)-2-pyrrolidinecarboxamide: A Practical Proline Mimetic for Facilitating Enantioselective Aldol Reactions. Organic Letters, 2008, 10, 4649-4652.	4.6	80
8	Asymmetric Construction of Nitrogen-Containing [2.2.2] Bicyclic Scaffolds Using N-(p-Dodecylphenylsulfonyl)-2-pyrrolidinecarboxamide. Journal of Organic Chemistry, 2009, 74, 5151-5156.	3.2	78
9	Synthesis of Tetra-ortho-substituted, Phosphorus-Containing and Carbonyl-Containing Biaryls Utilizing a Dielsâ^'Alder Approach. Journal of the American Chemical Society, 2007, 129, 9109-9116.	13.7	75
10	Highly Stereoselective and Scalable <i>anti</i> -Aldol Reactions Using <i>N</i> -(<i>p</i> -Dodecylphenylsulfonyl)-2-pyrrolidinecarboxamide: Scope and Origins of Stereoselectivities. Journal of Organic Chemistry, 2010, 75, 7279-7290.	3.2	74
11	Novel Nitro-PAH Formation from Heterogeneous Reactions of PAHs with NO ₂ , NO ₃ /N ₂ O ₅ , and OH Radicals: Prediction, Laboratory Studies, and Mutagenicity. Environmental Science & Echnology, 2014, 48, 412-419.	10.0	71
12	A Highly Stereoselective Synthesis of Epothilone B. Journal of Organic Chemistry, 1999, 64, 684-685.	3.2	70
13	Studies Directed toward the Total Synthesis of Azaspiracid:  Stereoselective Construction of C1â^'C12, C13â^'C19, and C21â^'C25Fragments. Organic Letters, 2000, 2, 3913-3916.	4.6	70
14	Development of an Enantioselective Route toward the <i>Lycopodium</i> Alkaloids: Total Synthesis of Lycopodine. Journal of Organic Chemistry, 2010, 75, 4929-4938.	3.2	69
15	Synthesis of All-Carbon, Quaternary Center-Containing Cyclohexenones through an Organocatalyzed, Multicomponent Coupling. Organic Letters, 2010, 12, 3108-3111.	4.6	66
16	Diels–Alder Approach to Polysubstituted Biaryls: Rapid Entry to Tri- and Tetra-ortho-substituted Phosphorus-Containing Biaryls. Angewandte Chemie - International Edition, 2006, 45, 6737-6741.	13.8	63
17	Dielsâ^'Alder Approach for the Construction of Halogenated, o-Nitro Biaryl Templates and Application to the Total Synthesis of the Anti-HIV Agent Siamenol. Journal of Organic Chemistry, 2007, 72, 9857-9865.	3.2	60
18	Exploiting Hidden Symmetry in Natural Products: Total Syntheses of Amphidinolides C and F. Journal of the American Chemical Society, 2013, 135, 10792-10803.	13.7	58

#	Article	IF	Citations
19	Primary Amine, Thiourea-Based Dual Catalysis Motif for Synthesis of Stereogenic, All-Carbon Quaternary Center-Containing Cycloalkanones. Organic Letters, 2012, 14, 3178-3181.	4.6	55
20	Studies on the synthesis of the core structures of the antitumor agents neocarzinostatin, kedarcidin, C-1027 and maduropeptin. Tetrahedron, 1996, 52, 6283-6306.	1.9	53
21	Studies on the Stereoselective Synthesis of the Marine Antitumor Agent Eleutherobin. Tetrahedron, 2000, 56, 4367-4382.	1.9	50
22	Unified Synthesis of C19â^'C26 Subunits of Amphidinolides B1, B2, and B3 by Exploiting Unexpected Stereochemical Differences in Crimmins' and Evans' Aldol Reactions. Journal of Organic Chemistry, 2004, 69, 2569-2572.	3.2	47
23	Enantioselective Mannich Reactions with the Practical Proline Mimetic N-(p-Dodecylphenyl-sulfonyl)-2-pyrrolidinecarboxamide. Journal of Organic Chemistry, 2009, 74, 2246-2249.	3.2	46
24	Synthesis of the C1–C26 Northern Portion of Azaspiracid-1: Kinetic versus Thermodynamic Control of the Formation of the Bis-spiroketal. Angewandte Chemie - International Edition, 2006, 45, 1787-1790.	13.8	42
25	Total Synthesis of Cytotoxic Macrolide Amphidinolide B1 and the Proposed Structure of Amphidinolide B2. Journal of the American Chemical Society, 2008, 130, 7253-7255.	13.7	42
26	Studies directed toward the total synthesis of azaspiracid. Construction of the C1–C19 carbon backbone and synthesis of the C10, C13 nonnatural transoidal bisspirocyclic ring system. Tetrahedron Letters, 2001, 42, 6035-6039.	1.4	41
27	Enantioselective Total Synthesis of Amphidinolideâ€F. Angewandte Chemie - International Edition, 2012, 51, 7948-7951.	13.8	41
28	Highly Enantioselective Construction of Polycyclic Spirooxindoles by Organocatalytic 1,3â€Dipolar Cycloaddition of 2â€Cyclohexenone Catalyzed by Prolineâ€Sulfonamide. European Journal of Organic Chemistry, 2014, 2014, 5700-5704.	2.4	40
29	Enantioselective Approach to Quinolizidines: Total Synthesis of Cermizine D and Formal Syntheses of Senepodine G and Cermizine C. Journal of Organic Chemistry, 2013, 78, 4779-4800.	3.2	39
30	Synthesis of the ABC Ring System of Azaspiracid. 1. Effect of D Ring Truncation on Bis-spirocyclization. Organic Letters, 2002, 4, 2177-2179.	4.6	37
31	Mechanism and Stereoselectivity of a Dual Amino-Catalyzed Robinson Annulation: Rare Duumvirate Stereocontrol. Journal of the American Chemical Society, 2012, 134, 13624-13631.	13.7	37
32	Improved Synthesis of Epothilone B Employing Alkylation of an Alkyne for Assembly of Subunits. Organic Letters, 1999, 1, 1431-1434.	4.6	36
33	Synthesis of Programmable Tetra- <i>ortho</i> -Substituted Biaryl Compounds Using Dielsâ^Alder Cycloadditions/Cycloreversions of Disubstituted Alkynyl Stannanes. Journal of the American Chemical Society, 2008, 130, 3290-3291.	13.7	36
34	Synthetic Studies toward Amphidinolide B1:  Synthesis of the C9â^'C26Fragment. Organic Letters, 2005, 7, 4209-4212.	4.6	34
35	Synthesis of the ABC Ring System of Azaspiracid. 2. A Systematic Study into the Effect of C16 and C17 Substitution on Bis-spirocyclization. Organic Letters, 2002, 4, 2181-2184.	4.6	33
36	Synthesis of the ABCD and ABCDE ring systems of azaspiracid-1. Chemical Communications, 2004, , 2138.	4.1	33

#	Article	IF	CITATIONS
37	Highly regioselective nitrile oxide dipolar cycloadditions with ortho-nitrophenyl alkynes. Organic and Biomolecular Chemistry, 2012, 10, 9204.	2.8	33
38	Synthesis of the Southern FGHI Ring System of Azaspiracid-1 and Investigation into the Controlling Elements of C28- and C36-Ketalization. Angewandte Chemie - International Edition, 2006, 45, 7622-7626.	13.8	31
39	Enantioselective Total Synthesis of Mandelalide A and Isomandelalide A: Discovery of a Cytotoxic Ring-Expanded Isomer. Journal of the American Chemical Society, 2016, 138, 770-773.	13.7	30
40	Schinortriterpenoids: A Case Study in Synthetic Design. Angewandte Chemie - International Edition, 2017, 56, 1704-1718.	13.8	30
41	Organocatalyzed, enantioselective synthesis of bicyclo-[2.2.2]-octanes containing benzylic, all-carbon quaternary centers. Tetrahedron, 2010, 66, 4854-4859.	1.9	29
42	Expedient Enantioselective Synthesis of Cermizine D. Organic Letters, 2012, 14, 1596-1599.	4.6	27
43	Efficient synthesis of the C7-C20 subunit of amphidinolides C and F. Organic and Biomolecular Chemistry, 2009, 7, 4582.	2.8	26
44	Amphidinolide B: Total Synthesis, Structural Investigation, and Biological Evaluation. Journal of Organic Chemistry, 2013, 78, 2213-2247.	3.2	26
45	Controlling influences in bisspiroketal formation: synthesis of the ABC ring system of azaspiracid. Tetrahedron, 2003, 59, 8963-8974.	1.9	25
46	Enantioselective Synthesis of (â^')â€Halenaquinone. Angewandte Chemie - International Edition, 2018, 57, 9117-9121.	13.8	25
47	Recent Syntheses and Strategies toward Polycyclic Gelsemium Alkaloids. Angewandte Chemie - International Edition, 2019, 58, 681-694.	13.8	25
48	Dielsâ^'Alder Approach to Biaryls: Elucidation of Competing Tandem [2+2] Cycloaddition/[1,3] Sigmatropic Shift Pathway. Journal of Organic Chemistry, 2008, 73, 7305-7309.	3.2	24
49	Stereoselective Synthesis of the Eastern Quinolizidine Portion of Himeradine A. Organic Letters, 2011, 13, 4144-4147.	4.6	24
50	Proline sulphonamide-catalysed Yamada–Otani condensation: reaction development, substrate scope and scaffold reactivity. Organic and Biomolecular Chemistry, 2012, 10, 4851.	2.8	24
51	Vanadium-catalyzed selenide oxidation with in situ [2,3] sigmatropic rearrangement (SOS reaction): scope and asymmetric applications. Organic and Biomolecular Chemistry, 2004, 2, 1315-1329.	2.8	22
52	Construction of Stereogenic α,α-Disubstituted Cycloalkanones via 1° Amine Thiourea Dual Catalysis: Experimental Scope and Computational Analyses. Journal of Organic Chemistry, 2016, 81, 3629-3637.	3.2	22
53	A Diels–Alder approach to biaryls (DAB): synthesis of the western portion of TMC-95. Tetrahedron, 2008, 64, 856-865.	1.9	20
54	Synthesis of the ABC Ring System of Jiadifenin <i>via</i> Pd-Catalyzed Cyclizations. Organic Letters, 2011, 13, 988-991.	4.6	20

#	Article	IF	Citations
55	Synthesis and Computational Analysis of Densely Functionalized Triazoles Using o-Nitrophenylalkynes. Journal of Organic Chemistry, 2012, 77, 1101-1112.	3.2	19
56	Synthesis of quinolizidine-containing lycopodium alkaloids and related natural products. Tetrahedron, 2016, 72, 4989-5001.	1.9	19
57	Stereoselective, Ag-Catalyzed Cyclizations To Access Polysubstituted Pyran Ring Systems: Synthesis of C ₁ –C ₁₂ Subunit of Madeirolide A. Organic Letters, 2016, 18, 1744-1747.	4.6	18
58	Towards theory driven structure elucidation of complex natural products: mandelalides and coibamide A. Organic and Biomolecular Chemistry, 2016, 14, 5826-5831.	2.8	18
59	Dielsâ^'Alder Approach to Tetra-ortho-Substituted Biaryls Employing Propargylic Tertiary Alcohols as Dienophiles. Journal of Organic Chemistry, 2007, 72, 10220-10223.	3.2	17
60	Toward a Unified Approach for the Lycopodines: Synthesis of 10-Hydroxylycopodine, Deacetylpaniculine, and Paniculine. Organic Letters, 2013, 15, 736-739.	4.6	17
61	The first vanadium-catalyzed oxidation of aryl allylic selenides with in situ [2,3] sigmatropic rearrangement. Chemical Communications, 2000, , 2031-2032.	4.1	16
62	Diels–Alder approach to biaryls (DAB): Importance of the ortho-nitro moiety in the [4 + 2] cycloaddition. Organic and Biomolecular Chemistry, 2008, 6, 255-257.	2.8	16
63	Synthesis of jiadifenin using Mizoroki–Heck and Tsuji–Trost reactions. Tetrahedron, 2015, 71, 2199-2209.	1.9	15
64	Total Syntheses of Aromatic Abietane Diterpenoids Utilizing Advances in the Pummerer Rearrangement. Organic Letters, 2018, 20, 5546-5549.	4.6	14
65	Proline Sulfonamide Based Organocatalysis: Better Late than Never. Synlett, 2010, 2010, 2827-2838.	1.8	13
66	Asymmetric synthesis of (â^')-chicanine using a highly regioselective intramolecular Mitsunobu reaction and revision of its absolute configuration. Tetrahedron Letters, 2011, 52, 3005-3008.	1.4	12
67	Pummerer Cyclization Revisited: Unraveling of Acyl Oxonium Ion and Vinyl Sulfide Pathways. Organic Letters, 2018, 20, 5541-5545.	4.6	12
68	Proline Sulfonamideâ€Catalyzed, ÂDomino Process for Asymmetric Synthesis of Amino―and Hydroxyâ€Substituted Bicyclo[2.2.2]octanes. European Journal of Organic Chemistry, 2016, 2016, 150-157.	2.4	10
69	Innovation, entrepreneurship, promotion, and tenure. Science, 2021, 373, 1312-1314.	12.6	10
70	Enantioselective Synthesis of (â^³)â€Halenaquinone. Angewandte Chemie, 2018, 130, 9255-9259.	2.0	8
71	Schinortriterpenoide: eine Fallstudie in Synthesedesign. Angewandte Chemie, 2017, 129, 1728-1743.	2.0	8
72	Unified Synthesis of 10-Oxygenated <i>Lycopodium</i> Alkaloids: Impact of C ₁₀ -Stereochemistry on Reactivity. Journal of Organic Chemistry, 2016, 81, 5963-5980.	3.2	7

#	Article	IF	CITATIONS
73	Inclusively Recognizing Faculty Innovation and Entrepreneurship Impact within Promotion and Tenure Considerations. Journal of Open Innovation: Technology, Market, and Complexity, 2021, 7, 182.	5.2	7
74	Second-Generation Synthesis of the Northern Fragment of Mandelalide A: Role of π-Stacking on Sharpless Dihydroxylation of <i>cis</i> -Enynes. Journal of Organic Chemistry, 2019, 84, 9196-9214.	3.2	6
75	A Call For Promoting Faculty Innovation and Entrepreneurship. Change, 2021, 53, 18-24.	0.5	6
76	Asymmetric Construction of Vicinal Stereocenters Containing Quaternary and Tertiary Carbons: Application to the Formal Synthesis of (–) henopodene. European Journal of Organic Chemistry, 2020, 2020, 420-423.	2.4	3
77	Moving backwards in new ways. Nature Chemistry, 2010, 2, 613-614.	13.6	2
78	Synthesis of the Southern FGHI Ring System of Azaspiracid-1 and Investigation into the Controlling Elements of C28- and C36-Ketalization. Angewandte Chemie - International Edition, 2007, 46, 1004-1004.	13.8	1
79	Regioselective lithiation of benzyl imidazole: Synthesis and evaluation of new organocatalysts for <i>trans</i> -diol functionalization Synthetic Communications, 2019, 49, 3131-3139.	2.1	1
80	Vanadium-Catalyzed Selenide Oxidation with in situ [2,3] Sigmatropic Rearrangement (SOS Reaction): Scope and Asymmetric Applications ChemInform, 2004, 35, no.	0.0	0
81	Recent Syntheses and Strategies toward Polycyclic Gelsemium Alkaloids. Angewandte Chemie, 2019, 131, 692-705.	2.0	0