
Scott A Armstrong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6749727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	YBX1 mediates translation of oncogenic transcripts to control cell competition in AML. Leukemia, 2022, 36, 426-437.	7.2	18
2	The menin-MLL1 interaction is a molecular dependency in <i>NUP98</i> -rearranged AML. Blood, 2022, 139, 894-906.	1.4	42
3	Menin Inhibitors in Acute Myeloid Leukemia—What Does the Future Hold?. Cancer Journal (Sudbury,) Tj ETQq1	1 0.7843 2.0	14.rgBT /Ove
4	Bone Marrow Surveillance of Pediatric Cancer Survivors Identifies Clones that Predict Therapy-Related Leukemia. Clinical Cancer Research, 2022, 28, 1614-1627.	7.0	4
5	MLL::AF9 degradation induces rapid changes in transcriptional elongation and subsequent loss of an active chromatin landscape. Molecular Cell, 2022, 82, 1140-1155.e11.	9.7	21
6	SETD2 Haploinsufficiency Enhances Germinal Center–Associated AICDA Somatic Hypermutation to Drive B-cell Lymphomagenesis. Cancer Discovery, 2022, 12, 1782-1803.	9.4	14
7	MOZ and Menin–MLL Complexes Are Complementary Regulators of Chromatin Association and Transcriptional Output in Gastrointestinal Stromal Tumor. Cancer Discovery, 2022, 12, 1804-1823.	9.4	10
8	IKAROS and MENIN coordinate therapeutically actionable leukemogenic gene expression in MLL-r acute myeloid leukemia. Nature Cancer, 2022, 3, 595-613.	13.2	16
9	Antigen presentation safeguards the integrity of the hematopoietic stem cell pool. Cell Stem Cell, 2022, 29, 760-775.e10.	11.1	29
10	HAND1 and BARX1 Act as Transcriptional and Anatomic Determinants of Malignancy in Gastrointestinal Stromal Tumor. Clinical Cancer Research, 2021, 27, 1706-1719.	7.0	14
11	Taspase1 orchestrates fetal liver hematopoietic stem cell and vertebrae fates through cleaving TFIIA. JCI Insight, 2021, 6, .	5.0	2
12	A JAK/STAT-mediated inflammatory signaling cascade drives oncogenesis in AF10-rearranged AML. Blood, 2021, 137, 3403-3415.	1.4	8
13	Histone PTM Crosstalk Stimulates Dot1 Methyltransferase Activity. Trends in Biochemical Sciences, 2021, 46, 522-524.	7.5	4
14	High-resolution characterization of gene function using single-cell CRISPR tiling screen. Nature Communications, 2021, 12, 4063.	12.8	23
15	Potent Ikaros Degradation By the Cereblon E3 Ligase Modulator CC-92480 Is Effective in Combination with Menin-MLL1 Inhibition in <i>MLL1</i> -Rearranged and <i>NPM1</i> -Mutant AML. Blood, 2021, 138, 208-208.	1.4	2
16	Resistance Mechanisms to SYK Inhibition in Acute Myeloid Leukemia. Cancer Discovery, 2020, 10, 214-231.	9.4	27
17	Paediatric Strategy Forum for medicinal product development of epigenetic modifiers for children. European Journal of Cancer, 2020, 139, 135-148.	2.8	20
18	Chromatin Complexes Maintain Self-Renewal of Myeloid Progenitors in AML: Opportunities for Therapeutic Intervention. Stem Cell Reports, 2020, 15, 6-12.	4.8	13

#	Article	IF	CITATIONS
19	Oncogenic Gene-Expression Programs in Leiomyosarcoma and Characterization of Conventional, Inflammatory, and Uterogenic Subtypes. Molecular Cancer Research, 2020, 18, 1302-1314.	3.4	24
20	Targeting Chromatin Complexes in Myeloid Malignancies and Beyond: From Basic Mechanisms to Clinical Innovation. Cells, 2020, 9, 2721.	4.1	13
21	Novel inhibitors of the histone methyltransferase DOT1L show potent antileukemic activity in patient-derived xenografts. Blood, 2020, 136, 1983-1988.	1.4	25
22	lt's Not What You Say But How You Say It: Targeting RNA Methylation in AML. Molecular Cell, 2020, 78, 996-998.	9.7	6
23	Loss of H3K36 Methyltransferase SETD2 Impairs V(D)J Recombination during Lymphoid Development. IScience, 2020, 23, 100941.	4.1	6
24	Leukemia Cell of Origin Influences Apoptotic Priming and Sensitivity to LSD1 Inhibition. Cancer Discovery, 2020, 10, 1500-1513.	9.4	24
25	Synergistic targeting of <i>FLT3</i> mutations in AML via combined menin-MLL and FLT3 inhibition. Blood, 2020, 136, 2442-2456.	1.4	59
26	Therapeutic targeting of preleukemia cells in a mouse model of <i>NPM1</i> mutant acute myeloid leukemia. Science, 2020, 367, 586-590.	12.6	145
27	A dominant-negative effect drives selection of <i>TP53</i> missense mutations in myeloid malignancies. Science, 2019, 365, 599-604.	12.6	265
28	Rationale for targeting BCL6 in <i>MLL</i> -rearranged acute lymphoblastic leukemia. Genes and Development, 2019, 33, 1265-1279.	5.9	17
29	Acute myeloid leukemia driven by the CALM-AF10 fusion gene is dependent on BMI1. Experimental Hematology, 2019, 74, 42-51.e3.	0.4	15
30	Targeting chromatin complexes in fusion protein-driven malignancies. Nature Reviews Cancer, 2019, 19, 255-269.	28.4	55
31	A Menin-MLL Inhibitor Induces Specific Chromatin Changes and Eradicates Disease in Models of MLL-Rearranged Leukemia. Cancer Cell, 2019, 36, 660-673.e11.	16.8	231
32	IKZF2 Drives Leukemia Stem Cell Self-Renewal and Inhibits Myeloid Differentiation. Cell Stem Cell, 2019, 24, 153-165.e7.	11.1	66
33	Enhancer Domains in Gastrointestinal Stromal Tumor Regulate KIT Expression and Are Targetable by BET Bromodomain Inhibition. Cancer Research, 2019, 79, 994-1009.	0.9	17
34	A Non-catalytic Function of SETD1A Regulates Cyclin K and the DNA Damage Response. Cell, 2018, 172, 1007-1021.e17.	28.9	97
35	LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBPα-dependent enhancers in AML. Blood, 2018, 131, 1730-1742.	1.4	92
36	MEF2C Phosphorylation Is Required forÂChemotherapy Resistance in Acute Myeloid Leukemia. Cancer Discovery, 2018, 8, 478-497.	9.4	59

#	Article	IF	CITATIONS
37	Peptidomimetic blockade of MYB in acute myeloid leukemia. Nature Communications, 2018, 9, 110.	12.8	68
38	HOXA9 Reprograms the Enhancer Landscape to Promote Leukemogenesis. Cancer Cell, 2018, 34, 643-658.e5.	16.8	94
39	Location, Location, Location: Mutant NPM1c Cytoplasmic Localization Is Required to Maintain Stem Cell Genes in AML. Cancer Cell, 2018, 34, 355-357.	16.8	5
40	Inhibition of MEK and ATR is effective in a B-cell acute lymphoblastic leukemia model driven by Mll-Af4 and activated Ras. Blood Advances, 2018, 2, 2478-2490.	5.2	12
41	The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood, 2018, 131, 2661-2669.	1.4	313
42	Gastrointestinal stromal tumor enhancers support a transcription factor network predictive of clinical outcome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5746-E5755.	7.1	20
43	Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. ELife, 2018, 7, .	6.0	125
44	Histone Acetyltransferase Activity of MOF Is Required for <i>MLL-AF9</i> Leukemogenesis. Cancer Research, 2017, 77, 1753-1762.	0.9	38
45	ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature, 2017, 543, 265-269.	27.8	203
46	Mixed-Lineage Leukemia Fusions and Chromatin in Leukemia. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026658.	6.2	46
47	Functional screen of MSI2 interactors identifies an essential role for SYNCRIP in myeloid leukemia stem cells. Nature Genetics, 2017, 49, 866-875.	21.4	75
48	Degradation of the BAF Complex Factor BRD9 by Heterobifunctional Ligands. Angewandte Chemie - International Edition, 2017, 56, 5738-5743.	13.8	207
49	Degradation of the BAF Complex Factor BRD9 by Heterobifunctional Ligands. Angewandte Chemie, 2017, 129, 5832-5837.	2.0	14
50	PGBD5 promotes site-specific oncogenic mutations in human tumors. Nature Genetics, 2017, 49, 1005-1014.	21.4	69
51	PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science, 2017, 355, 1324-1330.	12.6	217
52	Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature, 2017, 544, 53-58.	27.8	155
53	SETD2 alterations impair DNA damage recognition and lead to resistance to chemotherapy in leukemia. Blood, 2017, 130, 2631-2641.	1.4	102
54	A UTX-MLL4-p300 Transcriptional Regulatory Network Coordinately Shapes Active Enhancer Landscapes for Eliciting Transcription. Molecular Cell, 2017, 67, 308-321.e6.	9.7	172

#	Article	IF	CITATIONS
55	<i>miR-99</i> regulates normal and malignant hematopoietic stem cell self-renewal. Journal of Experimental Medicine, 2017, 214, 2453-2470.	8.5	44
56	Forward genetic screen of human transposase genomic rearrangements. BMC Genomics, 2016, 17, 548.	2.8	13
57	The role of DOT1L in the maintenance of leukemia gene expression. Current Opinion in Genetics and Development, 2016, 36, 68-72.	3.3	41
58	Exploiting the Epigenome to Control Cancer-Promoting Gene-Expression Programs. Cancer Cell, 2016, 29, 464-476.	16.8	122
59	Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nature Medicine, 2016, 22, 672-678.	30.7	301
60	Targeting Chromatin Regulators Inhibits Leukemogenic Gene Expression in <i>NPM1</i> Mutant Leukemia. Cancer Discovery, 2016, 6, 1166-1181.	9.4	171
61	NUP98 Fusion Proteins Interact with the NSL and MLL1 Complexes to Drive Leukemogenesis. Cancer Cell, 2016, 30, 863-878.	16.8	111
62	DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nature Medicine, 2016, 22, 1488-1495.	30.7	195
63	Targeting the kinase activities of ATR and ATM exhibits antitumoral activity in mouse models of <i>MLL</i> -rearranged AML. Science Signaling, 2016, 9, ra91.	3.6	63
64	Ezh2 Controls an Early Hematopoietic Program and Growth and Survival Signaling in Early T Cell Precursor Acute Lymphoblastic Leukemia. Cell Reports, 2016, 14, 1953-1965.	6.4	65
65	MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia. Journal of Clinical Investigation, 2016, 126, 1438-1450.	8.2	33
66	MLL-AF9– and HOXA9-mediated acute myeloid leukemia stem cell self-renewal requires JMJD1C. Journal of Clinical Investigation, 2016, 126, 997-1011.	8.2	69
67	Peptidomimetic Blockade of MYB in Acute Myeloid Leukemia. Blood, 2016, 128, 3945-3945.	1.4	0
68	Aberrant Phosphorylation of MEF2C Is Dispensable for Hematopoiesis, and Induces Chemotherapy Resistance and Susceptibility to MARK Kinase Inhibition Therapy in Acute Myeloid Leukemia. Blood, 2016, 128, 436-436.	1.4	0
69	Oncogenic Feedback Activation Between BCL6 and MLL Promotes Malignant Transformation in MLL-RearrangedAcute Lymphoblastic Leukemia. Blood, 2016, 128, 907-907.	1.4	0
70	Selective Inhibition of HDAC1 and HDAC2 as a Potential Therapeutic Option for B-ALL. Clinical Cancer Research, 2015, 21, 2348-2358.	7.0	57
71	Structure-Guided DOT1L Probe Optimization by Label-Free Ligand Displacement. ACS Chemical Biology, 2015, 10, 667-674.	3.4	20
72	MLL partial tandem duplication leukemia cells are sensitive to small molecule DOT1L inhibition. Haematologica, 2015, 100, e190-e193.	3.5	45

#	Article	IF	CITATIONS
73	Evolutionarily Conserved Signaling Pathways: Acting in the Shadows of Acute Myelogenous Leukemia's Genetic Diversity. Clinical Cancer Research, 2015, 21, 240-248.	7.0	25
74	Targeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyond. Experimental Hematology, 2015, 43, 673-684.	0.4	97
75	Inactivation of Eed impedes MLL-AF9–mediated leukemogenesis through Cdkn2a-dependent and Cdkn2a-independent mechanisms in a murine model. Experimental Hematology, 2015, 43, 930-935.e6.	0.4	20
76	Designed to Kill: Novel Menin-MLL Inhibitors Target MLL -Rearranged Leukemia. Cancer Cell, 2015, 27, 431-433.	16.8	22
77	DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nature Medicine, 2015, 21, 335-343.	30.7	200
78	Hematopoietic Differentiation Is Required for Initiation of Acute Myeloid Leukemia. Cell Stem Cell, 2015, 17, 611-623.	11.1	97
79	Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature, 2015, 526, 273-276.	27.8	307
80	JMJD1C is required for the survival of acute myeloid leukemia by functioning as a coactivator for key transcription factors. Genes and Development, 2015, 29, 2123-2139.	5.9	76
81	A chromatin-independent role of Polycomb-like 1 to stabilize p53 and promote cellular quiescence. Genes and Development, 2015, 29, 2231-2243.	5.9	32
82	The PZP Domain of AF10 Senses Unmodified H3K27 to Regulate DOT1L-Mediated Methylation of H3K79. Molecular Cell, 2015, 60, 319-327.	9.7	78
83	Drugging Chromatin in Cancer: Recent Advances and Novel Approaches. Molecular Cell, 2015, 60, 561-570.	9.7	47
84	Transmembrane Inhibitor of RICTOR/mTORC2 in Hematopoietic Progenitors. Stem Cell Reports, 2014, 3, 832-840.	4.8	17
85	AF10 Regulates Progressive H3K79 Methylation and HOX Gene Expression in Diverse AML Subtypes. Cancer Cell, 2014, 26, 896-908.	16.8	153
86	Telomerase Inhibition Effectively Targets Mouse and Human AML Stem Cells and Delays Relapse following Chemotherapy. Cell Stem Cell, 2014, 15, 775-790.	11.1	74
87	Mutations in epigenetic regulators including SETD2 are gained during relapse in paediatric acute lymphoblastic leukaemia. Nature Communications, 2014, 5, 3469.	12.8	171
88	Genomic Dark Matter Sheds Light on EVI1-Driven Leukemia. Cancer Cell, 2014, 25, 407-408.	16.8	4
89	Acute Myelogenous Leukemia-Induced Sympathetic Neuropathy Promotes Malignancy in an Altered Hematopoietic Stem Cell Niche. Cell Stem Cell, 2014, 15, 365-375.	11.1	308
90	DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature, 2014, 514, 107-111.	27.8	174

#	Article	IF	CITATIONS
91	Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood, 2014, 124, 13-23.	1.4	139
92	CDK9-mediated transcription elongation is required for MYC addiction in hepatocellular carcinoma. Genes and Development, 2014, 28, 1800-1814.	5.9	167
93	Pathprinting: An integrative approach to understand the functional basis of disease. Genome Medicine, 2013, 5, 68.	8.2	13
94	The cell fate determinant Llgl1 influences HSC fitness and prognosis in AML. Journal of Experimental Medicine, 2013, 210, 15-22.	8.5	47
95	Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. Blood, 2013, 121, 2533-2541.	1.4	149
96	Myeloid Leukemia Cells With MLL partial Tandem Duplication Are Sensitive To Pharmacological Inhibition Of The H3K79 Methyltransferase DOT1L. Blood, 2013, 122, 1256-1256.	1.4	35
97	Patient Derived Xenograft (PDX) Models Faithfully Recapitulate The Genetic Composition Of Primary AML. Blood, 2013, 122, 1328-1328.	1.4	2
98	Identification Of Actionable Genomic Alterations In Hematologic Malignancies By a Clinical Next Generation Sequencing-Based Assay. Blood, 2013, 122, 230-230.	1.4	2
99	Regulation Of Normal and Malignant Hoxa Gene Expression Through Higher H3K79 Methylated States. Blood, 2013, 122, 2492-2492.	1.4	2
100	Inhibition Of LSD1 As a Therapeutic Strategy For The Treatment Of Acute Myeloid Leukemia. Blood, 2013, 122, 3964-3964.	1.4	25
101	Inhibition Of Telomerase Is a Novel and Effective Therapy In MLL-Rearranged Acute Myeloid Leukemia (AML). Blood, 2013, 122, 2887-2887.	1.4	0
102	Acute Myeloid Leukemia Alters The Mesenchymal Stem Cell Potential Of The HSC Niche: Evidence For Modulation By β-Adrenergic Signals. Blood, 2013, 122, 342-342.	1.4	0
103	Identification Of BCL6 As a Therapeutic Target In MLL-Rearranged ALL. Blood, 2013, 122, 72-72.	1.4	0
104	Genome-Wide RNAi Screen Identifies The Mechanistic Role For DOT1L In MLL-Rearranged Leukemia. Blood, 2013, 122, 598-598.	1.4	4
105	Genetic and Pharmacologic Inhibition of β-Catenin Targets Imatinib-Resistant Leukemia Stem Cells in CML. Cell Stem Cell, 2012, 10, 412-424.	11.1	209
106	Chromatin modifications as therapeutic targets in MLL-rearranged leukemia. Trends in Immunology, 2012, 33, 563-570.	6.8	52
107	Targeting BCL6-Mediated Drug-Resistance in High-Risk Childhood ALL. Blood, 2012, 120, 776-776.	1.4	0
108	The Interaction Between DOT1L and AF10 Is Required for H3K79 Dimethylation and MLL-AF9 Leukemia. Blood, 2012, 120, 401-401.	1.4	0

#	Article	IF	CITATIONS
109	Selective Killing of Mixed Lineage Leukemia Cells by a Potent Small-Molecule DOT1L Inhibitor. Cancer Cell, 2011, 20, 53-65.	16.8	842
110	MLL-Rearranged Leukemia Is Dependent on Aberrant H3K79 Methylation by DOT1L. Cancer Cell, 2011, 20, 66-78.	16.8	791
111	Haploinsufficiency of Dnmt1 Impairs Leukemia Stem Cell Function Through Derepression of Bivalent Chromatin Domains,. Blood, 2011, 118, 3459-3459.	1.4	3
112	Selective Killing of Mixed Lineage Leukemia Cells by a Potent Small-Molecule DOT1L Inhibitor. Blood, 2010, 116, 780-780.	1.4	1
113	β-Catenin Suppression Targets Imatinib Resistant Leukemia Stem Cells In Mice with BCR-ABL Induced Myeloproliferative Disease. Blood, 2010, 116, 93-93.	1.4	1
114	Bmi-1 Is Dispensable for the Development of Acute Myeloid Leukemia Mediated by MLL-AF9. Blood, 2010, 116, 63-63.	1.4	1
115	A Pilot Trial of Rapamycin with Glucocorticoids In Children and Adults with Relapsed ALL. Blood, 2010, 116, 3244-3244.	1.4	0
116	Demonstration of a Role for Dot1l In MLL-Rearranged Leukemia Using a Conditional Loss of Function Model. Blood, 2010, 116, 62-62.	1.4	0
117	HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood, 2009, 113, 2375-2385.	1.4	292
118	H3K79 Methylation Profiles Define Murine and Human MLL-AF4 Leukemias. Cancer Cell, 2008, 14, 355-368.	16.8	494
119	MLL translocations, histone modifications and leukaemia stem-cell development. Nature Reviews Cancer, 2007, 7, 823-833.	28.4	1,039
120	HOXA9 Represses Bim Expression in MLL Rearranged Leukemia: Implications for Drug Therapy Blood, 2007, 110, 57-57.	1.4	0
121	Hoxa9+Meis1a Efficiently Transform Hematopoietic Stem Cells but Not Committed Progenitors Blood, 2007, 110, 3375-3375.	1.4	0
122	Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature, 2006, 442, 818-822.	27.8	1,317
123	HoxA9 Knockdown Inhibits Proliferation and Induces Cell Death in Human MLL-Rearranged Leukemias Blood, 2006, 108, 734-734.	1.4	2
124	Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO Journal, 2005, 24, 368-381.	7.8	111
125	Genome-Wide Identification of Prednisolone-Responsive Genes in Primary Acute Lymphoblastic Leukemia Cells Blood, 2005, 106, 103-103.	1.4	8
126	MLL-AF9 and FLT3 Cooperation during Myeloid Leukemogenesis: Development of a Model for Rapid Testing of New Therapeutics Blood, 2005, 106, 1605-1605.	1.4	0

#	Article	IF	CITATIONS
127	FLT3 mutations in childhood acute lymphoblastic leukemia. Blood, 2004, 103, 3544-3546.	1.4	235
128	MLL Rearranged Infant Acute Lymphoblastic Leukemia Is Characterized by Silencing of the Putative Tumor Suppressor Gene FHIT Blood, 2004, 104, 525-525.	1.4	0
129	Inhibition of FLT3 in MLL. Cancer Cell, 2003, 3, 173-183.	16.8	389
130	MLL-rearranged leukemias: insights from gene expression profiling. Seminars in Hematology, 2003, 40, 268-273.	3.4	61
131	Comparison of human genomics and genetic models of cancer to identify novel therapeutic targets. Cell Cycle, 2003, 2, 408-9.	2.6	0
132	Genomic approaches to the pathogenesis and treatment of acute lymphoblastic leukemias. Current Opinion in Hematology, 2002, 9, 339-344.	2.5	9
133	MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics, 2002, 30, 41-47.	21.4	1,720